Как это работает
Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить .
Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:
x2 + bx + c
Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:
Тогда приведённый квадратный трехчлен x2 + bx + c можно разложить на множители следующим образом. Сначала b из уравнения x1 + x2 = −b. Для этого можно умножить обе его части на −1
Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:
Теперь подставим выраженные переменные b и c в квадратный трёхчлен x2 + bx + c
Раскроем скобки там где это можно:
В получившемся выражении выполним . В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Из первых скобок вынесем общий множитель x, из вторых скобок — общий множитель −x2
Далее замечаем, что выражение (x − x1) является общим множителем. Вынесем его за скобки:
Мы пришли к тому, что выражение x2 + bx + c стало равно (x − x1)(x − x2)
x2 + bx + c = (x − x1)(x − x2)
Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.
Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a
ax2 + bx + c = a(x − x1)(x − x2)
Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид ax2 + bx + c = 0, то теорема Виета принимает следующий вид:
Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a
Далее чтобы квадратный трёхчлен вида ax2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства и
Для начала выразим b и c. В первом равенстве умножим обе части на a. Затем обе части получившегося равенства умножим на −1
Теперь из второго равенства выразим c. Для этого умножим обе его части на a
Теперь подставим выраженные переменные b и с в квадратный трёхчлен ax2 + bx + c. Для наглядности каждое преобразование будем выполнять на новой строчке:
Здесь вместо переменных b и c были подставлены выражения −ax1 − ax2 и ax1x2, которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:
В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:
Теперь из первых скобок вынесем общий множитель ax, а из вторых — общий множитель −ax2
Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:
Вторые скобки содержат общий множитель a. Вынесем его за скобки. Его можно расположить в самом начале выражения:
Мы пришли к тому, что выражение ax2 + bx + c стало равно a(x − x1)(x − x2)
ax2 + bx + c = a(x − x1)(x − x2)
Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(x − x1)(x − x2) вместо переменных x1 и x2.
Что такое линейное уравнение с одной переменной
Уравнением называют какое-либо выражение минимум с одной переменной, части которого разделены знаком равенства.
Пример 1
Рассмотрим несколько наглядных примеров.
Пусть имеется выражение следующего вида: 5 – 3 = 2
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут
В данном случае оно не является уравнением из-за отсутствия переменной. Другое подобное выражение (неверное) также нельзя отнести к числу уравнений: 5+3=2 Уравнениями являются следующие выражения, в состав которых входит переменная х: 5-x=2 5+3x=2
Равенства, в том числе, в составе системы, могут быть справедливыми и неверными. С целью проверки стоит лишь посчитать значения выражений, которые расположены по обе стороны от знака равенства. Когда результаты совпадают, стоит сделать вывод о том, что равенство верно. В случае получения по итогам вычислений разных чисел допустимо заключить, что равенство не является верным.
С другой стороны, уравнение, которое содержит переменные, невозможно так быстро посчитать. Значение частей в уравнении зависит от того, какое значение примет неизвестная и несколько переменных. Путем подстановки численного значения по стандартному алгоритму на место переменной уравнение упрощают. Получив стандартное равенство, его справедливость достаточно просто оценить.
Пример 2
Представим, что имеется некое уравнение: х + 5 = 8
Когда х = 10, выражение примет следующий вид: 10 + 5 = 8
Сделаем вывод о том, что равенство не является верным при таком значении неизвестной. Попробуем подставить в выражение х = 3: 3 + 5 = 8 В результате получилось верное равенство.
Заметим, что существуют некие значения для переменной, при которых равенство становится справедливым. Кроме того, имеются такие значения неизвестной, которые обращают выражение в неверное равенство. Исходя из этой мысли, сформулируем понятие корня уравнения.
Корень уравнения является значением неизвестной, которое обращает рассматриваемое выражение в справедливое числовое равенство.
Решить уравнение — обозначает поиск всех корней рассматриваемого уравнения, либо приведение доказательств об отсутствии таковых корней.
Таким образом, какие-то уравнения несложно решить, а у прочих может не оказаться подходящих к условиям корней. Минимальным уровнем сложности обладают линейные уравнения. Расшифруем этот термин.
Линейное уравнение представляет собой уравнение, которое представлено в следующем виде: ах + b = 0, a и b являются числами, а х играет роль переменной.
Примечание 1
К линейным относят также такие уравнения, которые с помощью метода простых преобразований можно записать в виде ax+b=0.
Пример 3
Запишем линейные уравнения: х + 5 = 18
2х = 8 7 — (х — 3) = х – 6
Нельзя отнести в линейным следующие уравнения:
\({х}^{2} = 0\)
\(\frac{5}{х} = 1\)
\(|х| = 64\)
Простые уравнения с одной переменной.
Все уравнения, которые вы решали в школе, и которые, соответственно, могут встретиться в этом задании ЕГЭ по математике, можно разделить на несколько основных типов — рациональные, иррациональные, показательные, логарифмические, тригонометрические. Точные определения этих терминов вы можете найти в учебнике. Здесь нас будет интересовать только классификация по типам тех уравнений, которые представлены в банке заданий ЕГЭ для задач с кратким ответом. Она нужна для того, чтобы уметь «узнавать уравнение в лицо» и сразу догадываться о том, с чего начинать его решение.
А начинать решение любого уравнения обычно нужно с преобразования его к наиболее простому виду. Наиболее простым, как правило, является такой способ записи уравнения, который совпадает с «Общим видом», представленным в учебнике. Потому что именно для этого способа записи существуют рекомендации по получению ответа. И именно эти рекомендации вы проходили на уроках, именно они изложены в учебниках.
Ниже вы увидите таблицу, которая поможет вам ориентироваться в многообразии уравнений, предлагаемых в этом задании ЕГЭ по математике. В ней символом x обозначена переменная величина, неизвестное значение которой нужно найти. В абсолютном большинстве уравнений используется такое же обозначение. Однако не забывайте, что и другие символы, например y, z, u, v, t, …, имеют право на существование в качестве неизвестных, в том числе, и в уравнениях с одной переменной.
Другими символами в столбце «Общий вид» — a, b, c — обозначены константы, т.е. постоянные для этой записи уравнения величины. Проще говоря, в конкретном случае на их месте просто будут стоять числа.
И, наконец, обозначения со скобками — p(x), q(x), f(x), g(x) — это выражения. На уроках вы не раз должны были слышать термин «математическое выражение». Однако, если это вам всё еще ни о чем не говорит, то называйте его для себя, например, формулой от x.
Первоначально что-то в этой таблице может вам показаться непонятным. Пропустите это и вернитесь к ней еще раз после разбора очередной группы примеров, а также непосредственно перед экзаменом, чтобы быстро повторить все возможные варианты, которые могут встретиться в этом задании.
Внимание: Таблица кликабельна. Если щелкнуть левой клавишей мыши по одному из уравнений в третьем столбце, то загрузится решение этого примера
Но не спешите это делать. Сначала подумайте, как его решите Вы сами. Затем сравните ответы. Ваш способ решения необязательно должен совпадать с моим. Основной критерий правильности — получение тождества при подстановке корня в исходное уравнение.
Тип уравнений | Общий вид | Примеры задач | Признаки |
---|---|---|---|
Рациональные | Линейные | В равенстве присутствуют только числа и x в первой степени. | |
Квадратные | Числа, x и x2. Присутствие x2 обязательно. | ||
Целые рациональные, содержащие многочлен степени n > 2 | где p(x) — многочлен | Числа и x в разных степенях. Есть степень, большая, чем 2. | |
Дробно-рациональные. | Есть х в знаменателе. | ||
Иррациональные | и т.п. | Присутствует знак радикала (знак извлечения корня). x хотя бы один раз встречается под знаком радикала. | |
Тригонометрические | где |a| ≤ 1, и | х под знаком тригонометрической функции. | |
Показательные | х находится в показателе степени. | ||
Логарифмические | где a > 0 и a ≠ 1 или и т.п. | х под знаком логарифма или в основании логарифма. | |
Смешанные | Присутствуют признаки нескольких (чаще двух) типов. |
Понятно, что одним примером многообразие задач каждого типа не исчерпывается. Более того, и методов решения уравнений одного типа нужно знать несколько. Посмотрите, например, статьи о квадратных уравнениях.
- 4,5 способа решения одного квадратного уравнения.
- Квадратное уравнение. Быстро и без ошибок.
Перейдите по стрелке, чтобы найти ссылки на другие задачи ЕГЭ по математике.
Решение уравнений методом подбора корня
Необязательно преобразовывать ур-ние, чтобы найти его корни. Одним из приемов решения целых уравнений является метод подбора корня. Ведь если надо доказать, что какое-то число – это корень ур-ния, достаточно просто подставить это число в ур-ние и получить справедливое равенство!
Пример. Докажите, что корнями ур-ния
х3 – 2х2 – х + 2 = 0
являются только числа (– 1), 1 и 2.
Решение. Подставим в ур-ние каждую из предполагаемых корней и получим справедливое равенство. При х = – 1 имеем:
(– 1)3 – 2(– 1)2 – (– 1) + 2 = 0
–1 – 2 + 1 + 2 = 0
0 = 0
При х = 1 получаем:
13 – 2•12 – 1 + 2 = 0
1 – 2 – 1 + 2 = 0
0 = 0
Наконец, рассмотрим случай, когда х = 2
23 – 2•22 – 2 + 2 = 0
8 – 8 – 2 + 2 = 0
0 = 0
Исходное ур-ние имеет 3-ю степень, поэтому у него не более 3 корней. То есть других корней, кроме (– 1), 1 и 2 , у него нет.
Конечно, просто так подобрать корни довольно тяжело. Однако есть некоторые правила, которые помогают в этом. Для начала введем понятие коэффициентов уравнения.
Понятно, что ур-ние Р(х) = 0 в общем виде можно записать так:
аxn + a1xn–1 + … + аn–1х + аn = 0
Числа а, а1, а2,…аnи называют коэффициентами уравнений.
Например, для уравнения
5х4 – 7х3 + 9х2 – х + 12 = 0
коэффициенты равны
а = 5
а1 = – 7
а2 = 9
а3 = – 1
а4 = + 12
Если одна из слагаемых «пропущено» в уравнении, то считают, что коэффициент перед ним равен нулю. Например, в ур-нии
х3 + 2х – 15 = 0
нет слагаемого с буквенной частью х2. Можно считать, что ур-ние равносильно записи
х3 + 0х2 + 2х – 15 = 0
где слагаемое х2 есть, но перед ним стоит ноль. Тогда коэффициент а1 = 0.
Для обозначения первого коэффициента а может использоваться термин старший коэффициент, а для последнего коэффициента аn – термин «свободный член» или «свободный коэффициент».
Изучение коэффициентов ур-ния помогает быстрее подобрать корень. Существует следующая теорема:
Докажем это утверждение. Пусть m – это целый корень уравнения с целыми коэффициентами
аxn + a1xn–1 + … + аn–1х + аn = 0
Тогда можно подставить туда число m и получить верное равенство:
аmn + a1mn–1 + … + аn–1m + аn = 0
Поделим обе его части на m и получим
аmn–1 + a1mn–2 + … + аn–1 + аn/m = 0
Справа – целое число (ноль), значит, и сумма чисел слева также целая. Все числа аmn–1, a1mn–2, аn–1, очевидно, целые (так как и целыми являются и m, и все коэффициенты). Значит, и число аn/m должно быть целым. Но это возможно лишь в том случае, если m является делителем числа аn.
Из доказанной теоремы следует, что при подборе корней ур-ния достаточно рассматривать только те из них, которые являются делителями свободного члена. При этом следует учитывать и отрицательные делители.
Пример. Найдите целые корни уравнения
2х4 – х3 – 9х2 + 4х + 4 = 0
Решение. Все коэффициенты ур-ния – целые, а потому целый корень должен быть делителем свободного члена, то есть числа 4. Делителями четверки являются 1 и (– 1), 2 и (– 2), 4 и (– 4). Подставляя каждое из этих чисел в ур-ние, получим верные равенства только для чисел 1, 2 и (– 2):
2•14 – 13 – 9•12 + 4•1 + 4 = 2 – 1 – 9 + 4 + 4 = 0
2•24 – 23 – 9•22 + 4•2 + 4 = 32 – 8 – 36 + 8 + 4 = 0
2•(– 2)4 – (– 2)3 – 9•(– 2)2 + 4(– 2) + 4 = 32 + 8 – 36 – 8 + 4 = 0
Таким образом, только эти числа и могут быть целыми корнями ур-ния. Так как мы рассматриваем ур-ние 4 степени, то, возможно, у него помимо 3 целых корней есть ещё один дробный.
Ответ: 1; 2; (– 2).
Пример. Решите ур-ние
0,5х3 + 0,5х + 5 = 0
Решение. У ур-ния дробные коэффициенты. Умножим обе части равенства на 2 и получим ур-ние с целыми коэффициентами:
0,5х3 + 0,5х + 5 = 0
(0,5х3 + 0,5х + 5)•2 = 0•2
х3 + х + 10 = 0
Попытаемся подобрать целый корень ур-ния. Он должен быть делителем свободного члена, то есть десятки. Возможными кандидатами являются числа 1 и (– 1), 2 и (– 2), 5 и (– 5), 10 и (– 10). Подходит только корень х = – 2:
(– 2)3 + (– 2) + 10 = – 8 – 2 + 10 = 0
Обратим внимание, что в левой части ур-ния стоит сумма функций, возрастающих на всей числовой прямой: у = х3 и у = х + 10. Значит, и вся левая часть х3 + х + 10 монотонно возрастает
Это значит, что у ур-ния есть только один корень, и мы его нашли ранее подбором.
Ответ: – 2
Ещё быстрее можно узнать, является ли единица корнем уравнения.
Докажем это. Подставим в ур-ние
аxn + a1xn–1 + … + аn–1х + аn = 0
значение х = 1. Так как единица в любой степени равна самой единице, то получим:
а1n + a11n–1 + … + аn–11 + аn = 0
а + a1 + … + аn–1 + аn = 0
Получили равенство, в котором слева стоит сумма коэффициентов, в справа – ноль. Если сумма коэффициентов действительно равна нулю, то равенство верное, а, значит, единица является корнем ур-ния.
Пример. Укажите хотя бы 1 корень ур-ния
499х10 – 9990х7 + 501х6 – 10х5 + 10000х4 – 1000 = 0
Решение. Заметим, что при сложении коэффициентов ур-ния получается 0:
499 – 9990 + 501 – 10 + 10000 – 1000 = (499 + 501 – 1000) + (10000 – 9990 – 10) = 0 + 0 = 0
Следовательно, единица является его корнем.
Ответ: 1.
Что такое уравнение?
В общем случае, уравнением называется тождество с одной неизвестной.
Тождеством зовется равенство. То есть уравнение это два равных между собой выражения, одно из которых или оба содержат неизвестное. Важным является условие присутствия только одной неизвестной в одном уравнении.
Можно написать уравнение с двумя и большим количеством переменных, но такое выражение решить не получится. Запомните, даже в системах уравнений, количество переменных должно равняться количеству уравнений. Например, система:
х+3=2
у+х=3
Z+у=4 – имеет решение. А вот уравнение:
Х+у=12 – однозначных решений не имеет. Почему?
Х+3=5
Неизвестная имеет только одно решение. В уравнении х+у=12 – решений бесконечно много. Число х может быть любым, как только мы выберем и подставим любое число, изменится в соответствии с нашим выбором и у. Поэтому и говорят, что у такого уравнения нет определенных решений.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.
А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.
Рациональные уравнения
Рациональные уравнения широко применяются в приборостроении, космических исследованиях, финансовых операциях и т.д.
Подобие фигур широко применяется в измерительных, конструкторских и дизайнерских работах.
Это интересно!
На рисунке изображена модель орбитального космического корабля, предназначенная для полёта в космос туристов. Корабль рассчитан на 6 пассажиров и 2 членов экипажа.
Для того, чтобы рассчитать оптимальные размеры корабля конструкторам и инженерам пришлось решить много рациональных уравнений.
Рациональные уравнения
Уравнение, содержащее в левой и правой части рациональные выражения называется рациональным уравнением. Во многих задачах приходится решать рациональные уравнения, содержащие переменную в знаменателе. В этом случае необходимо указывать область допустимых значений переменных (ОДЗ).
Пример:
В данном уравнении ОДЗ Учитывая, что умножим обе части уравнения на
отсюда получим
Подставим полученное значение в уравнение:
Таким образом, является корнем уравнения. Данное уравнение не имеет других корней.
Пример:
Решим уравнение
ОДЗ данного уравнения Умножим обе части уравнения на общий
знаменатель
Пример:
В уравнении, ОДЗ
Используя свойство пропорции можно написать:
Пример:
Решим уравнение. Здесь ОДЗ,
Умножим обе части уравнения на
Отсюда
Проверьте, являются ли оба этих числа корнями данного уравнения.
Пример:
Решим уравнение
Запишем уравнение в виде и умножим обе стороны на общий множитель Получим
Отсюда
При проверке, убеждаемся что, не удовлетворяет уравнению, т.к. превращает знаменатель в «0». Таким образом, корнем данного уравнения является только
Внимание! После решения рационального уравнения, содержащего переменную в знаменателе, нужно обязательно выполнить проверку корней
Решение задач с помощью рациональных уравнений
Задачи на работу
Задача. Двое рабочих могут выполнить некоторую работу за 12 дней. За сколько дней каждый рабочий выполнит эту работу в отдельности, если одному из них для выполнения этой работы потребуется на 10 дней больше ,чем другому? Решение: Пусть, 2-ой рабочий может выполнить работу за дней, тогда 1-ый рабочий выполнит её за дней
Первый рабочий за 1 день выполняет — ую часть работы, 2-ой — — ую. Вместе, за 1 день они выполнят часть работы. Зная, что вместе за 1 день они выполняют часть работы (согласно условию), составим уравнение Умножим обе части уравнения на Получим, После упрощения имеем Решением данного уравнения являются числа и (не удовлетворяет условию, т.к. ). Итак Ответ: 2-ой рабочий выполняет работу за 20 дней, а 1-ый — за 30 дней.
Задачи на движение
Задача. Путь длиной 480 км проходит по асфальтовой и по просёлочной дороге. Автомобиль расстояние 80 км по просёлочной дороге, прошёл со скоростью на 40 км/час меньше, чем по асфальтовой дороге. Зная, что на весь путь он затратил 7 часов, найдите время, которое потратил автомобиль при движении по просёлочной дороге.
1-й способ:
Из 2-ой строки таблицы: Из 3-е1 строки таблицы: Отсюда получаем рациональное уравнение
Разделим обе части уравнения на 40:
Получим (противоречит условию задачи)
Ответ: по просёлочной дороге 2 часа
2-ой способ: Автомобиль ехал по дороге, покрытой асфальтом часов, а по проселочной дороге часов.
Зная, что на весь путь он потратил 7 часов, составим уравнение:
Решив данное уравнение, получим = 40 км/ч. Тогда по просёлочной дороге он двигался 80 : 40 = 2 часа.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Рациональные неравенства и их системы
- Геометрические задачи и методы их решения
- Прямые и плоскости в пространстве
- Интеграл и его применение
- Параллельность в пространстве
- Перпендикулярность в пространстве
- Векторы и координаты в пространстве
- Множества
Теорема Виета
Рассмотрим уравнение вида $ax^3+bx^2+cx+d=0$.
Данное уравнение обладает тремя корнями и для того чтобы его решить в общем виде, необходимо решить следующую систему:
Получи помощь с рефератом от ИИ-шки
ИИ ответит за 2 минуты
$\begin{cases} x_1 + x_2+x_3=-\frac{b}{a} \\ x_1x_2 + x_2x_3+x_3x_1=\frac{c}{a} \\ x_1x_2x_3=-\frac{d}{a} \\ \end{cases}$
Иначе эти системы уравнений также называют формулами Виета.
Пример 1
Решите уравнение: $x^3+x^2-4x-4=0$.
Решение:
Составим систему уравнений:
$\begin{cases} x_1+ x_2+x_3=-\frac{1}{1} \\ x_1 \cdot x_2 + x_2 \cdot x_3 + x_1 \cdot x_3=-\frac{4}{1}=-4 \\ x_1 \cdot x_2 \cdot x_3= -\frac{4}{1}\\ \end{cases}$
Решив её, получим следующие корни:
$\begin{cases} x_1=-2 \\ x_2=2 \\ x_3=-1 \\ \end{cases}$
Целые рациональные уравнения
Если в уравнении нет переменной \(x\) в знаменателе, то такое уравнение называется целым. Или, другими словами, нигде в уравнении нет деления на переменную.
Метод решения целых рациональных уравнений сильно зависит от того, какой степени перед вами уравнения.
Степень уравнения — это максимальная степень у переменной \(x\).
Например, уравнение \(x^2+5x-1=0\) будет второй степени, так как есть \(x^2\).
Пример уравнения первой степени: \(5x-1=17\);
Уравнение третьей степени: \(5x^3-3x^2=0\);
Уравнение четвертой степени: \(7x^4-5x^2+x-5=0\);
И т.д.
Основной алгоритм решения целых уравнений:
- Если есть скобки, раскрываем их;
- Перекидываем все слагаемые в левую часть так, чтобы в правой части остался только \(0\). Не забываем при этом менять знак этих слагаемых;
- Приводим подобные слагаемые;
- Если получилось уравнение первой степени (в уравнении есть только \(x\)), то решаем его так (линейные уравнения);
- Если получилось уравнение второй степени (в уравнении есть \(x^2\)), то оно решается вот так (квадратные уравнения).
- А вот если в преобразованном уравнении получились члены \(x^3\) или большей степени, то придется применять нестандартные методы решения. Например, замена переменной, группировка, схема Горнера и т.д.
Чаще всего уравнения после преобразований будут сводиться к уравнениям первой (линейные уравнения) и второй (квадратные уравнения) степени.
Разберем примеры целых рациональных уравнений:
Пример 1
$$-4(-7+6x)=-9x-5;$$
Первым делом раскрываем скобки:
$$28-24x=-9x-5;$$
Перекидываем все слагаемые из правой части в левую:
$$28-24x+9x+5=0;$$
Поменяем слагаемые местами, чтобы удобнее было приводить подобные слагаемые:
$$-24x+9x+5+28=0;$$
$$-15x+33=0;$$
Получили линейное уравнение. Чтобы его решить, перекидываем свободный член (тот, что без \(x\)) в правую часть:
$$-15x=-33;$$
И поделим уравнение слева и справа на \(-15\):
$$x=\frac{-33}{-15};$$
$$x=\frac{11}{5}=2,2;$$
Ответ: \(x=2,2.\)
Важно отметить, то, что уравнение линейное, стало видно сразу после раскрытия скобок: у нас же не было степени у \(x\)-ов. Поэтому разумно было сразу решать его как линейное: перенести все слагаемые с \(x\) в левую часть, а все числа в правую
Так бы получилось немного короче.
Пример 2
$$4*(x+1)^2-2(x+3)=(2x-5)^2;$$
Тут сразу и не скажешь, какой степени уравнение. На первый взгляд кажется, что квадратное, но давайте раскроем скобки, воспользовавшись формулами сокращенного умножения:
$$4*(x^2+2x+1)-2x-6=4x^2-20x+25;$$
$$4*x^2+8x+4-2x-6=4x^2-20x+25;$$
Перекинем все в левую часть, не забывая поменять знак:
$$4*x^2+8x+4-2x-6-4x^2+20x-25=0;$$
Поменяем местами слагаемые, чтобы было проще приводить подобные:
$$4x^2-4x^2+8x-2x+20x+4-6-25=0;$$
$$26x-27=0;$$
Как видите, все квадраты сократились, и уравнение превратилось в линейное:
$$26x=27;$$
$$x=\frac{27}{26};$$
Ответ: \(x=\frac{27}{26}.\)
Пример 3
$$\frac{x}{6}+\frac{x}{12}+x=-\frac{35}{4};$$
Домножим уравнение слева и справа на \(12\). Почему именно на \(12\)? Потому что в уравнении есть дроби с знаменателями \(6\), \(12\) и \(4\), на все эти числа \(12\) можно разделить:
$$12*(\frac{x}{6}+\frac{x}{12}+x)=12*(-\frac{35}{4});$$
$$12*\frac{x}{6}+12*\frac{x}{12}+12*x=12*(-\frac{35}{4});$$
$$2x+x+12x=-3*35;$$
$$15x=-105;$$
$$x=\frac{-105}{15}=-7;$$
Ответ: \(x=-7.\)
Подробнее про линейные уравнения можно почитать в отдельной статье.
Пример 4
$$(x-1)^2=2x^2-6x-31;$$
Раскроем скобки:
$$x^2-2x+1=2x^2-6x-31;$$
$$x^2-2x+1-2x^2+6x+31=0;$$
$$x^2-2x^2-2x+6x+1+31=0;$$
$$-x^2+4x+32=0;$$
После приведения подобных слагаемых в уравнении остался \(x^2\), а значит перед нами квадратное уравнение, которое можно решить через дискриминант:
$$a=-1; \quad b=4; \quad c=32;$$
$$D=b^2-4ac=4^2-4*(-1)*32=16+128=144=12^2;$$
$$x_1=\frac{-b+\sqrt{D}}{2a}=\frac{-4+12}{2*(-1)}=\frac{8}{-2}=-4;$$
$$x_1=\frac{-b-\sqrt{D}}{2a}=\frac{-4-12}{2*(-1)}=\frac{-16}{-2}=8;$$
Ответ: \(x=-4; \qquad x=8.\)