Таблица менделеева. знаки химических элементов

Периодическая таблица химических элементов д.и.менделеева

Строение атома[править]

Основная статья: Строение атома

А́томw — частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.
Атом состоит из ядра и атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом.

Ионw — одноатомная или многоатомная электрически заряженная частица, образующаяся в результате потери или присоединения атомом или молекулой одного или нескольких электронов.

Ядроw состоит из положительно заряженных протонов и нейтральных нейтронов.

Прото́нw (от др.-греч. πρῶτος — первый, основной) — элементарная частица, электрический заряд +1.

Нейтронw — элементарная частица, не имеющая электрического заряда.

Электронw — стабильная, отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулыw.

А́томная ма́ссаw, относительная атомная масса (устаревшее название — атомный вес) — значение массы атома, выраженное в атомных единицах массы. В настоящее время атомная единица массы принята равной 1/12 массы нейтрального атома наиболее распространённого изотопаw углерода 12Cw, поэтому атомная масса этого изотопа по определению равна точно 12. Разность между атомной массой изотопа и его массовым числомw называется дефектом массыw (обычно выражаемом в МэВw). Он может быть как положительным, так и отрицательным; причина его возникновения — нелинейная зависимость энергии связи ядер от числа протонов и нейтронов, а также различие в массах протона и нейтрона.

Химический элемент и его свойства

В 1869 г. Д.И. Менделеев сформулировал периодический закон, современная формулировка которого звучит следующим образом:

Свойства химических элементов находятся в периодической зависимости от заряда ядра атомов химических элементов.

До того, как начать разговор о Периодической системе, давайте разберемся с тем, что же такое собственно химический элемент.

Химический элемент — совокупность (группа, сорт, вид) атомов, обладающих одинаковыми свойствами, с одним и тем же количеством протонов и нейтронов в ядре, электронов в электронной оболочке.

Свойства элементов можно распределить по нескольким группам:

  • металлические/неметаллические свойства,
  • окислительно-восстановительные свойства,
  • радиус атома,
  • электроотрицательность,
  • валентность и степени окисления,
  • энергия ионизации,
  • энергия сродства к электрону.

Данные свойства во многом зависят от положения атома в таблице Менделеева и атома. Подробнее о влияние конфигурации на свойства атома можно прочитать в статье «Строение атомов и электронные конфигурации».

Также практически все химические элементы, в отличие от веществ:

  • Могут образовывать ионы.
  • Содержатся в различных органических и неорганических веществах.
  • Могут образовывать аллотропные модификации (аллотропия — способность химического элемента образовывать несколько простых веществ). Например, атом кислорода может быть в виде соединения кислорода О2 и озона О3.
  • Имеют изотопы — разновидности атомов химического элемента, имеющие одинаковое количество протонов и электронов, но разное количество нейтронов, следовательно, и разную атомную массу.
Как «вес» элемента может сказаться на его «работе»?Мы упомянули, что изотопы имеют различную массу. Оказывается, «вес» элемента напрямую влияет на его свойства и применение.Самыми известными являются изотопы водорода: водород (масса равна 1), дейтерий (масса равна 2) и тритий (масса равна 3). Более тяжелые изотопы используются в атомной энергетике, для осуществления термоядерного синтеза и для создания водородных бомб.Изотопы имеет и углерод: углерод-12, углерод-13 и углерод-14 (цифра обозначает массу атома). Если первые два стабильны и встречаются повсеместно, то последний за счет своей массы менее стабилен — он хочет быстрее сбросить с себя лишние нейтроны путем распада. Данное качество сыграло решающую роль в применении углерода-14. Ученые рассчитали «время жизни» изотопа, благодаря чему при анализе органических веществ по количеству найденного углерода-14 можно сделать вывод о возрасте найденного объекта. Данный метод был назван радиоуглеродным анализом, сейчас он находит широкое применение при датировке (определении возраста) ископаемых. За это открытие в 1960 году Уилларду Либби была присуждена Нобелевская премия по химии. 

Теперь, когда мы разобрались в понятии и общих свойствах химических элементов, давайте разберем подробнее, как именно зависят их свойства от местонахождения в Периодической системе.

История создания Таблицы

Дмитрий Иванович Менделеев был не простым химиком, если кто-то так думает. Это был химик, физик, геолог, метролог, эколог, экономист, нефтяник, воздухоплаватель, приборостроитель и педагог.  За свою жизнь ученый успел провести фундаментально много исследований в самых разных областях знаний. Например, широко распространено мнение, что именно Менделеев вычислил идеальную крепость водки – 40 градусов.

Не знаем, как Менделеев относился к водке, но точно известно, что его диссертация на тему «Рассуждение о соединении спирта с водой» не имела к водке никакого отношения и рассматривала концентрации спирта от 70 градусов. При всех  заслугах ученого, открытие периодического закона химических элементов – одного их фундаментальных законов природы, принесло ему самую широкую известность.

Д. И. Менделеев (1834-1907)

Существует легенда, согласно которой периодическая система приснилась ученому, после чего ему осталось лишь доработать явившуюся идею. Но, если бы все было так просто.. Данная версия о создании таблицы Менделеева, по-видимому, не более чем легенда. На вопрос о том, как была открыта таблица, сам Дмитрий Иванович отвечал: «Я над ней, может быть, двадцать лет думал, а вы думаете: сидел и вдруг… готово»

В середине девятнадцатого века попытки упорядочить известные химические элементы (известно было 63 элемента) параллельно предпринимались несколькими учеными. Например, в 1862 году Александр Эмиль Шанкуртуа разместил элементы вдоль винтовой линии и отметил циклическое повторение химических свойств.

Химик и музыкант Джон Александр Ньюлендс предложил свой вариант периодической таблицы в 1866 году. Интересен тот факт, что в расположении элементов ученый пытался обнаружить некую мистическую музыкальную гармонию. В числе прочих попыток была и попытка Менделеева, которая увенчалась успехом.

Первоначальный вариант таблицы Менделеева

В 1869 году была опубликована первая схема таблицы, а день 1 марта 1869 года считается днем открытия периодического закона. Суть открытия Менделеева состояла в том, что свойства элементов с ростом атомной массы изменяются не монотонно, а периодически.

Первый вариант таблицы содержал всего 63 элемента, но Менделеев предпринял ряд очень нестандартных решений. Так, он догадался оставлять в таблице место для еще неоткрытых элементов, а также изменил атомные массы некоторых элементов. Принципиальная правильность закона, выведенного Менделеевым, подтвердилась очень скоро, после открытия галлия, скандия и германия, существование которых было предсказано ученым.

Группы

Вертикальные столбики элементов в периодической таблице — группы состоят из подгрупп: главной и побочной, они иногда обозначаются буквами А и Б соответственно.

В состав главных подгрупп входят s- и р-элементы, а в состав побочных — d- и f-элементы больших периодов.

Главная подгруппа — это совокупность элементов, которая размещается в периодической таблице вертикально и имеет одинаковую конфигурацию внешнего электронного слоя в атомах.

Как следует из приведенного определения, положения элемента в главной подгруппе определяется общим количеством электронов (s- и р-) внешнего энергетического уровня, равным номеру группы. Например, сера (S — 3s2 3p4 ), в атоме которого на внешнем уровне содержится шесть электронов, относится к главной подгруппе шестой группы, аргон (Ar — 3s2 3p6 ) — к главной подгруппе восьмой группы, а стронций (Sr — 5s2 ) — к ІІА-подгруппе.

Элементы одной подгруппы характеризуются сходством химических свойств. В качестве примера рассмотрим элементы ІА и VІІА подгрупп (табл.2). С ростом заряда ядра увеличивается количество электронных слоев и радиус атома, но количество электронов на внешнем энергетическом уровне остается постоянной: для щелочных металлов (подгруппа IА) — один, а для галогенов (подгруппа VIIА) — семь. Поскольку именно внешние электроны наиболее существенно влияют на химические свойства, то понятно, что каждая из рассмотренных групп элементов-аналогов имеет подобные свойства.

Но в пределах одной подгруппы наряду с подобием свойств наблюдается их некоторое изменение. Так, элементы подгруппы ІА все, кроме Н — активные металлы. Но с ростом радиуса атома и количества электронных слоев экранирующих влияние ядра на валентные электроны, металлические свойства усиливаются. Поэтому Fr более активный металл, чем Сs, a Cs — более активный, чем R в и т.д. А в подгруппе VIIA по той же причине ослабляются неметаллические свойства элементов при росте порядкового номера. Поэтому F — более активный неметалл по сравнению с Cl, a Cl — более активный неметалл сравнению с Br и т.д.

Таблица 2 — Некоторые характеристики элементов ІА и VІІА-подгрупп

период Подгруппа IA Подгруппа VIIA
Символ элемента Заряд ядра Радиус атома, нм Внешняя электронная конфигурацiя Символ элемента Заряд ядра Радиус атома, нм Внешняя электронная конфигурацiя
II Li +3 0,155 s 1 F +9 0,064 s 2 2 p 5
III Na +11 0,189 s 1 Cl +17 0,099 s 2 3 p 5
IV K +19 0,236 s 1 Br 35 0,114 s 2 4 p 5
V Rb +37 0,248 s 1 I +53 0,133 s 2 5 p 5
VI Cs 55 0,268 s 1 At 85 0,140 s 2 6 p 5
VII Fr +87 0,280 s 1

Побочные подгруппа — это совокупность элементов, размещаемых в периодической таблице вертикально и имеют одинаковое количество валентных электронов за счет застройки внешнего s- и втором снаружи d-энергетических подуровней.

Все элементы побочных подгрупп относятся к d-семейству. Эти элементы иногда называют переходными металлами. В побочных подгруппах свойства изменяются более медленно, поскольку в атомах d-элементов электроны застраивают второй извне энергетический уровень, а на внешнем уровне находятся только один или два электрона.

Положение первых пяти d-элементов (подгруппы IIIБ- VIIБ) каждого периода можно определить с помощью суммы внешних s-электронов и d-электронов второго снаружи уровня. Например, из электронной формулы скандия (Sc — 4s2 3d1 ) видно, что он размещается в побочной подгруппе (поскольку является d-элементом) третьей группы (поскольку сумма валентных электронов равна трем), а марганец (Mn — 4s2 3d5 ) размещается в побочной подгруппе седьмой группы.

Положение последних двух элементов каждого периода (подгруппы IБ и IIБ) можно определить по количеству электронов на внешнем уровне, поскольку в атомах этих элементов предыдущий уровень является полностью завершенным. Например, Ag ( 5s1 5d10 ) размещается в побочной подгруппе первой группы, Zn ( 4s2 3d10 ) — в побочной подгруппе второй группы.

Триады Fe-Co-Ni, Ru-Rh-Pd и Os-Ir-Pt размещены в побочной подгруппе восьмой группы. Эти триады образуют две семьи: железа и платиноидов. Кроме указанных семей отдельно выделяют семью лантаноидов (четырнадцать 4f-элементов) и семью актиноидов (четырнадцать 5f-элементов). Эти семьи принадлежат к побочной подгруппе третьей группы.

Рост металлических свойств элементов в подгруппах сверху вниз, а также уменьшение этих свойств в пределах одного периода слева направо обусловливают появление в периодической системе диагональной закономерности. Так, Be очень похож на Al, B — на Si, Ti — на Nb. Это ярко проявляется в том, что в природе эти элементы образуют подобные минералы. Например, в природе Те всегда бывает с Nb, образуя минералы — титанониобаты.

Как изменяются свойства элементов в Периодической таблице

Свойства элемента иногда классифицируются либо как химические, либо как физические. Химические свойства обычно наблюдаются в ходе химической реакции, в то время как физические свойства наблюдаются при исследовании образца чистого элемента. Химические свойства элемента обусловлены распределением электронов вокруг ядра атома, особенно внешних, или валентных, электронов; именно эти электроны участвуют в химических реакциях. Химическая реакция не влияет на атомное ядро; поэтому атомный номер остается неизменным в химической реакции.

Некоторые свойства элемента можно наблюдать только в совокупности атомов или молекул этого элемента. Эти свойства включают цвет, плотность, температуру плавления, температуру кипения, а также тепловую и электрическую проводимость. В то время как некоторые из этих свойств обусловлены главным образом электронной структурой элемента, другие более тесно связаны со свойствами ядра, например, массовым числом.

Примечание 2

Элементы иногда группируются в соответствии с их свойствами. Одна из основных классификаций элементов — металлы, неметаллы и металлоиды. Элементы с очень похожими химическими свойствами часто называют семействами; некоторые семейства элементов включают галогены, инертные газы и щелочные металлы. В периодической таблице элементы расположены в порядке возрастания атомного веса таким образом, что элементы в любом столбце обладают схожими свойствами.

Тенденции периодической таблицы

Понимание периодического изменения энергии ионизации, сродства к электрону, электроотрицательности, свойств кислот и оснований, числа окисления в окислительно-восстановительной реакции химических элементов являются очень важными характеристиками для любого обсуждения или информации в химии или науке. При изучении химии мы суммируем физические и химические свойства по группам и периодам.

Когда мы двигаемся вниз в группе, размер и электроположительный характер атомов увеличиваются. Энергия ионизации обычно уменьшается, но во многих случаях увеличивается из-за экранирования электронов или эффективных ядерных зарядов. У нижнего элемента кристаллических твердых металлов, таких как серебро (Ag), золото (Au), кадмий (Cd) и ртуть (Hg), энергия ионизации увеличивается. Электроотрицательность и сродство к электрону обычно уменьшаются, но иногда наблюдаются некоторые исключения. Тенденция сродства к электрону химического элемента второго ряда периодической таблицы обычно ниже, чем у третьего ряда.

Периодическая таблица с электронной конфигурацией

Пара элементов расположена по диагонали друг к другу в таблице периодов, чтобы описать простое соотношение или химические свойства, такие как электрическая поляризация содержимого в химии. Диагональная пара, такая как бериллий и алюминий, имеет аналогичное соотношение изменения / размера, поскольку размер увеличивается с меньшим периодом, в то время как заряд увеличивается вправо, но это правило не может работать полностью для всех элементов периодической таблицы.

Интересные факты в периодической таблице Менделеева, объясняющие общую связь между электронной структурой и периодическим размещением, предназначением химических элементов в краткой форме. Например, орбиталь 1s может иметь только два электрона, следовательно, период один содержит только два элемента. Период-VI включает 6s, 4f, 5d и 6p орбитали в электронной структуре валентной оболочки с общим количеством (2 + 14 + 10 + 6) = 32 элемента от цезия до радона. Упрощенная научная формула в химии используется для вычисления количества химических элементов в каждом периоде семейств периодической таблицы Менделеева.

Элементы таблицы Менделеева

Также есть класс «металлоподобных» полупроводников с неопределенным статусом. Отдельно располагаются благородные газы, не подверженные реакциям.

Часть элементов с номером более 100 открыта сравнительно недавно, их принадлежность к каким-либо группам только предположительна.

Щелочные и щелочноземельные элементы

Представители 1 (IA) и 2 (IIA) групп таблицы Менделеева — металлы со слабой устойчивостью и высокой степенью растворимости:

Щелочные металлы имеют серебристый отблеск, хорошо разламываются и режутся. Из всех размещенных в таблице металлов активнее других вступают в реакцию с молекулами других веществ, отдавая единственный свободный электрон. При контакте с водой создают гидроксиды – щелочи:

2Na + 2H20 = 2NaOH + H2

Щелочноземельные металлы более твердые и тугоплавкие, с бледно-серым оттенком. В их список входят:

Большая часть из них способна создавать щелочь, но не так легко расстается с двумя незанятыми электронами. Другие металлы они замещают, но перед щелочными бессильны и вытесняются ими из молекул.

Лантаноиды и актиноиды

Прежде получили название редкоземельных металлов из-за малого количества месторождений и трудностей в выводе чистого металла из соединений. Им соответствует 3 (III B) группа, хотя это иногда оспаривается.

В рамках семейства лантаноиды («скрытые») имеют схожую форму атома и внешние признаки, но различаются свойствами. Поодиночке почти не встречаются.

Актиноиды, помимо общих черт, радиоактивны. В природе, кроме, урана U 92, почти не встречаются, создаются искусственно.

Для удобства обе группы элементов выведены в 2 строки под общей таблицей.

Галогены и благородные газы

17 (VII A) группа состоит из галогенов:

В противоположность щелочам, эти неметаллы – самые сильные окислители, активно принимающие 8-й электрон к имеющимся семи для заполнения внешней оболочки.

Самый реактивный – фтор F 9 (способен разрушать молекулы воды):

2F2
+ 2H2O = 4HF + O2

3F2
+ 3H2O = OF2 + 4HF + H2O2

С ростом периода свойства элементов слабеют.

Все галогены токсичны, опасны для жизни, поражают дыхательные пути.

В последней, VIII A или 18 группе, находятся инертные газы:

Их внешний уровень электронов равен 8 (полностью заполнен), отчего они не способны вступать в реакцию с другими атомами. Крайне редко создают непрочные молекулы, распадающиеся при нагревании.

Переходные металлы

Представлены всеми подгруппами в традиционной системе или занимают с 3 по 12 столбцы в современных таблицах. Большинство обладает металлическим блеском, по цвету и состоянию различаются (большинство – твердые, но есть исключения, например, жидкая ртуть).

Могут отдавать разное количество электронов с нескольких оболочек для создания вещества (например, титан Ti 22 и железо Fe 26 способны отдавать от 2 до 4, медь Cu 29 – от 1 до 2, цинк Zn 30 – только 2, золото Au 79 и серебро Ag 47 практически не вступают в реакцию).

Металлоиды

Располагаются на стыке посреди легких металлов и неметаллов, в диагонали с 13 по 17 группах. В своем большинстве – полупроводники (хуже металлов проводят электрический ток). 

Часть из них – металлы внешне, неметаллы по активности, часть – наоборот. Бор B 5, к примеру, является неметаллом с полупроводниковыми качествами.

Постпереходные металлы

Они же «легкие». От переходных аналогов отличаются меньшей твердостью и весом. Имеют иные температуры плавления и кипения. Для соединений отдают электроны только с внешней оболочки. Превосходят полуметаллы по восстановительности. Легкий металл выглядит как вещество с матовым оттенком вместо блеска.

Размещаются после переходных металлов под полупроводниками (в 13-17 столбцах или IIIA – VIIA). Алюминий Al 13 носит неопределенный статус (иногда причисляется к металлоидам).

Неметаллы

Располагаются в правом верхнем углу между полуметаллами и инертными газами (начала 13-17 групп). Имеют больше электронов на внешней оболочке, стремятся присоединить к себе еще больше (в противоположность металлам), чтобы набрать полный уровень электронов.

Могут находиться:

  • в виде газа (кислород O 8, азот N 7);

  • жидкости (бром Br 35);

  • в твердом (углерод C 6, кремний Si 14) состоянии.

Интересное положение занимает водород H 1. Его причисляют то к 1, то к 17 группе: он, будучи неметаллом, может проявлять и окислительные, и восстановительные свойства.

Значение для мировой науки

В начале восьмидесятых годов из Германии поступали сообщения о новых, искусственно созданных химических веществах. К 1996 году полдюжины новых элементов были созданы в институте по исследованию тяжёлых ионов в немецком городе Дармштадте.

Значение таблицы Д. Менделеева для мировой науки:

  • она явилась наиболее важным этапом в развитии атомно-молекулярного учения;
  • с её помощью стало возможным предсказание ранее неизвестных химических элементов;
  • частицы, обнаруженные позже, точно стали на свободные места таблицы, предсказанные Менделеевым;
  • таблица помогла составить понятие о химическом элементе в современном понимании;
  • таблица дала возможность систематизировать типы атомов, для вновь созданных разделов физики (атомной физики и физики ядра).

Вначале периодическую систему пополняли новыми частицами химики, а сейчас эту задачу выполняют физики. Периодическая система элементов, созданная Дмитрием Менделеевым больше века назад, оказалось настолько универсальной, что каждое новое открытие только подтверждает ее верность.

Валентные элементы в группах

Нетрудно заметить, что внутри каждой группы элементы похожи друг на друга своими валентными электронами (электроны s и p-орбиталей, расположенных на внешнем энергетическом уровне).

У щелочных металлов — по 1 валентному электрону:

  • Li — 1s22s1;
  • Na — 1s22s22p63s1;
  • K — 1s22s22p63s23p64s1

У щелочноземельных металлов — по 2 валентных электрона:

  • Be — 1s22s2;
  • Mg — 1s22s22p63s2;
  • Ca — 1s22s22p63s23p64s2

У галогенов — по 7 валентных электронов:

  • F — 1s22s22p5;
  • Cl — 1s22s22p63s23p5;
  • Br — 1s22s22p63s23p64s23d104p5

У инертных газов — по 8 валентных электронов:

  • Ne — 1s22s22p6;
  • Ar — 1s22s22p63s23p6;
  • Kr — 1s22s22p63s23p64s23d104p6
Римский номер столбца группы — это количество валентных электронов у всех элементов данной группы.

Дополнительную информацию см. в статье Валентность и в Таблице электронных конфигураций атомов химических элементов по периодам.

Обратим теперь свое внимание на элементы, расположенные в группах с символов В. Они расположены в центре периодической таблицы и называются переходными металлами

Отличительной особенностью этих элементов является присутствие в атомах электронов, заполняющих d-орбитали:

  1. Sc — 1s22s22p63s23p64s23d1;
  2. Ti — 1s22s22p63s23p64s23d2

Отдельно от основной таблицы расположены лантаноиды и актиноиды — это, так называемые, внутренние переходные металлы. В атомах этих элементов электроны заполняют f-орбитали:

  1. Ce — 1s22s22p63s23p64s23d104p64d105s25p64f15d16s2;
  2. Th — 1s22s22p63s23p64s23d104p64d105s25p64f145d106s26p66d27s2

Подробнее см. Атомы переходных элементов (металлов)…

Как понять таблицу Менделеева, если ты не шаришь?

Краткая шпаргалка к Таблице Менделеева

Периодический закон легко применять на практике. Ещё со школы мы все должны знать: натрий похож на калий, фтор похож на хлор, а золото — на серебро и медь. Следующий элемент просто как бы прибавляет к уже существующим ещё что-то.

По самой таблице так же можно узнать примерные свойства. В подгруппах сверху вниз:

️ усиливаются металлические свойства и ослабевают неметаллические (появляются свободные электроны — проводит ток);

️ возрастает атомный радиус (выше плотность/масса),

️ возрастает сила образованных элементом оснований и бескислородных кислот (действие сильнее),

️ электроотрицательность падает (хуже соединяется с другими элементами).

В периоде с увеличением порядкового номера элемента:

️ электроотрицательность возрастает (лучше образовывает соединения),

️ металлические свойства убывают, неметаллические возрастают (хуже проводит ток),

️ атомный радиус падает (хуже создает соединения).

Ещё одно свойство связано с традиционной, «короткой» формой таблицы, предложенной самим Менделеевым: если сложить её пополам, посредине IV группы, окажется, что элементы напротив друг друга могут образовывать соединения друг с другом.

Хотя на первый взгляд это не нужно в обыденности, таблица Менделеева помогает быстро понять, например: какая кислота «сильнее», что лучше проводит ток, к чему не стоит прикасаться, чем можно отравиться.

Таблица Менделеева с выделением главных и побочных подгрупп

Элементы главных подгрупп обозначены фиолетовым цветом, побочных — серым. Я напоминаю, что свойства элементов, находящихся в одной группе, но в разных подгруппах, отличаются достаточно сильно.

Например, натрий, калий, медь и серебро находятся в I группе: Na и K — в главной подгруппе, Cu и Ag — в побочной. Свойства натрия и калия весьма похожи — активные металлы, бурно реагирующие с водой, легко окисляющиеся на воздухе, имеют низкие температуры плавления и кипения. Все это сильно отличается от свойств меди и серебра: инертные металлы, которые не реагируют не только с водой, но и с большинством кислот, на воздухе устойчивы, температуры плавления и кипения достаточно высоки.

Еще ярче отличия заметны, например, в VI группе. Кислород, сера, селен (главная подгруппа) — типичные неметаллы, а хром, молибден и вольфрам, находящиеся в побочной подгруппе, относятся к металлам.

Все проблемы исчезают, если вы используете таблицы Менделеева: «мешанина» из элементов главных и побочных подгрупп исчезает, и мы начинаем отчетливо видеть логику периодического закона.

Периоды Группы элементов
I II III IV V VI VII VIII
1

1
H
Водород
1,008

1
H
Водород
1,008

2
He
Гелий
4,003

2

3
Li
Литий
6,941

4
Be
Бериллий
9,012

5
B
Бор
10,811

6
C
Углерод
12,011

7
N
Азот
14,007

8
O
Кислород
15,999

9
F
Фтор
18,998

10
Ne
Неон
20,179

3

11
Na
Натрий
22,989

12
Mg
Магний
24,305

13
Al
Алюминий
26,982

14
Si
Кремний
28,086

15
P
Фосфор
30,974

16
S
Сера
32,066

17
Cl
Хлор
35,453

18
Ar
Аргон
39,948

4

19
K
Калий
39,098

20
Ca
Кальций
40,078

21
Sc
Скандий
44,956

22
Ti
Титан
47,88

23
V
Ванадий
50,942

24
Cr
Хром
51,996

25
Mn
Марганец
54,938

26
Fe
Железо
55,847

27
Co
Кобальт
58,933

28
Ni
Никель
58,69

29
Cu
Медь
63,546

30
Zn
Цинк
65,37

31
Ga
Галлий
69,72

32
Ge
Германий
72,59

33
As
Мышьяк
74,92

34
Se
Селен
78,96

35
Br
Бром
79,904

36
Kr
Криптон
83,80

5

37
Rb
Рубидий
85,47

38
Sr
Стронций
87,62

39
Y
Иттрий
88,905

40
Zr
Цирконий
91,22

41
Nb
Ниобий
92,906

42
Mo
Молибден
95,94

43
Tc
Технеций
97,91

44
Ru
Рутений
101,07

45
Rh
Родий
102,905

46
Pd
Палладий
106,4

47
Ag
Серебро
107,868

48
Cd
Кадмий
112,40

49
In
Индий
114,82

50
Sn
Олово
118,69

51
Sb
Сурьма
121,75

52
Te
Теллур
127,60

53
I
Йод
126,904

54
Xe
Ксенон
131,30

6

55
Cs
Цезий
132,905

56
Ba
Барий
137,33

57
La*
Лантан
138,906

72
Hf
Гафний
178,49

73
Ta
Тантал
180,948

74
W
Вольфрам
183,85

75
Re
Рений
186,207

76
Os
Осмий
190,2

77
Ir
Иридий
192,22

78
Pt
Платина
195,08

79
Au
Золото
196,967

80
Hg
Ртуть
200,59

81
Tl
Таллий
204,383

82
Pb
Свинец
307,2

83
Bi
Висмут
280,980

84
Po
Полоний
208,982

85
At
Астат
209,987

86
Rn
Радон
222,018

7

87
Fr
Франций
222,019

88
Ra
Радий
226,025

89
Ac^
Актиний
227,028

104
Rf
&nbsp

105
Db
Дубний

106
Sg
Сиборгий

107
Bh
Борий

108
Hs
Хасий

109
Mt
Мейтнерий

110

Высшие оксиды R2O RO R2O3 RO2 R2O5 RO3 R2O7 RO4
Водородные соед. RH4 RH3 H2R HR
*Лантаноиды

58
Ce
Церий
140,12

59
Pr
Празеодим
140,908

60
Nd
Неодим
144,24

61
Pm
Прометий
144,913

62
Sm
Самарий
150,36

63
Eu
Европий
151,96

64
Gd
Гадолиний
157,25

65
Tb
Тербий
158,925

66
Dy
Диспрозий
162,50

67
Ho
Гольмий
164,930

68
Er
Эрбий
167,26

69
Tm
Тулий
168,934

70
Yb
Иттербий
173,04

71
Lu
Лютеций
174,967

^Актиноиды

90
Th
Торий
232,038

91
Pa
Протактиний
231,036

92
U
Уран
238,030

93
Np
Нептуний
237,049

94
Pu
Плутоний
244,064

95
Am
Америций
243,061

96
Cm
Кюрий
247,070

97
Bk
Берклий
247,070

98
Cf
Калифорний
251,080

99
Es
Эйнштейний
252,083

100
Fm
Фермий
257,095

101
Md
Менделевий
258,099

102
No
Нобелий

103
Lr
Лоуренсий

Знаки химических элементов

Химические элементы в Периодической системе обозначаются химическими знаками или символами.

Шведский химик Й. Берцелиус предложил в качестве символа для каждого элемента записывать начальные буквы латинского названия химического элемента.

{"questions":,"answer":0}}},{"content":"Кто предложил записывать знаки химических элементов начальными буквами их латинских названий?`choice-6`","widgets":{"choice-6":{"type":"choice","options":,"explanations":,"answer":}}}]}

Названия некоторых химических элементов отражают их важные свойства. К примеру, кислород – рождающий кислоты, водород – рождающий воду и т. д.

Другие названия заимствованы из мифологии, как тантал.

Это имя одного из сыновей Зевса. Он совершил преступление перед богами и был наказан: стоял по горло в воде, а над его головой свисали ветви с ароматными плодами. Но как только он хотел напиться или поесть, ветви отклонялись в сторону, а вода утекала.

Выделяя тантал из руд, химики также испытали немало мучений.

Отдельные элементы названы в честь планет Солнечной системы или различных небесных тел: плутоний, уран, селен (с греч. Селена – Луна).

Некоторые названы в честь стран, городов или частей света: европий, германий, скандий, берклий, дубний, америций.

Также в названиях элементов воспеты имена величайших исследователей: эйнштейний, кюрий, менделеевий.


Альберт Эйнштейн во время чтения лекции (Вена, 1921)

{"questions":,"items":}}}]}

ФАКТЫ

История открытия химического элемента $Na$ (натрия)

Натрий и его соединения известны с давних времен. Еврейское слово neter встречается в Библии как название вещества, которое вскипает с уксусом.

Сода (натрон), встречается в природе в водах натронных озер в Египте.

Древние египтяне использовали природную соду для отбеливания холста, варки пищи, бальзамирования, изготовления глазурей и красок.

Как писал Плиний Старший, в дельте Нила соду выделяли из речной воды.

Она продавалась в виде больших кусков, а из-за примесей угля была окрашена в серый или черный цвет.

Название «натрий» произошло от латинского слова natrium, которое заимствовали из среднеегипетского языка, где оно означало: «сода», «едкий натр».

Аббревиатура «$Na$» и слово natrium были впервые использованы Йенсом Якобсом Берцелиусом для обозначения природных минеральных солей, в состав которых входила сода.

Английский химик Хемфри Дэви в 1807 году впервые получил натрий  электролизом расплава гидроксида натрия.

Понравилась статья? Поделиться с друзьями:
Грамматический портал
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: