Как тела электризуются?
В восемнадцатом веке американский ученый Франклин (1706-1790) высказал предположение, что электричество – это особая невесомая жидкость, столь тонкая, что она пропитывает все тела. Электризация же, по его мнению, основана на том, что электричество переплывает с одного тела на другое. Эта теория не нашла поддержки, так как правильность ее не удалось подтвердить на опытах.
Наэлектризованные волосы
Известно, что молекулы вещества состоят из более мелких частиц – атомов. Объяснить, почему тела электризуются, удалось лишь после изучения строения атомов. Оказалось, что атомы представляют сложную систему элементарных частиц:
- электроны, имеющие отрицательный заряд, движутся вокруг ядра;
- протоны с положительным зарядом находятся в ядре;
- нейтроны, не имеющие заряда частицы, находятся в ядре.
Все эти мельчайшие частицы обладают элементарным зарядом. У протона заряд с плюсом, у нейтрона заряда нет, значит, ядро в сумме является положительно заряженным. В атоме электронов столько же, сколько и протонов. В результате атом в целом электрически нейтрален, то есть не имеет заряда.
В обычных условиях вещества, состоящие из таких атомов, тоже электрически нейтральны.
В результате трения часть электронов может переместиться с одного тела на другое. Это происходит на расстояниях, очень близких к межмолекулярным. Но, когда после трения тела разъединить, электроны, покинувшие свои атомы, оказываются на другом теле. Получается на одном теле не хватает электронов (недостаток), а на другом электронов стало больше (избыток). Там, где избыток, тело отрицательно заряжено. Там, где недостаток, тело заряжается положительно.
Итак,
Этапы создания теории
XVII-XVIII века ознаменовались созданием основ мировой науки. Начиная с XVII века происходит ряд открытий, которые в будущем позволят человеку полностью изменить свою жизнь.
Появление термина
Английский физик и придворный врач Уильям Гильберт в 1600 году издал книгу «О магните и магнитных телах», в которой он давал определение «электрический». Оно объясняло свойства многих твердых тел после натирания притягивать небольшие предметы. Рассматривая это событие надо понимать, что речь идет не об изобретении электричества, а лишь о научном определении.
Уильям Гильберт смог изобрести прибор, который назвал версор. Можно сказать, что он напоминал современный электроскоп, функцией которого является определение наличия электрического заряда. При помощи версора было установлено, что, кроме янтаря, способностью притягивать легкие предметы также обладают:
- стекло;
- алмаз;
- сапфир;
- аметист;
- опал;
- сланцы;
- карборунд.
Первая электростатическая машина
В 1663 году немецкий инженер, физик и философ Отто фон Герике изобрел аппарат, являвшийся прообразом электростатического генератора. Он представлял собой шар из серы, насаженный на металлический стержень, который вращался и натирался вручную. С помощью этого изобретения можно было увидеть в действии свойство предметов не только притягиваться, но и отталкиваться.
В марте 1672 года известный немецкий ученый Готфрид Вильгельм Лейбниц в письме к Герике упоминал, что при работе с его машиной он зафиксировал электрическую искру. Это стало первым свидетельством загадочного на тот момент явления. Герике создал прибор, послуживший прототипом всех будущих электрических открытий.
В 1729 году ученый из Великобритании Стивен Грей произвел опыты, которые позволили открыть возможность передачи электрического заряда на небольшие (до 800 футов) расстояния. А также он установил, что электричество не передается по земле. В дальнейшем это дало возможность классифицировать все вещества на изоляторы и проводники.
Два вида зарядов
Французский ученый и физик Шарль Франсуа Дюфе в 1733 году открыл два разнородных электрических заряда:
- «стеклянный», который теперь именуется положительным;
- «смоляной», называющийся отрицательным.
Затем он произвел исследования электрических взаимодействий, которыми было доказано, что разноименно наэлектризованные тела будут притягиваться один к одному, а одноименно — отталкиваться. В этих экспериментах французский изобретатель пользовался электрометром, который позволял измерять величину заряда.
Лейденская банка
В 1745 году физик из Голландии Питер ван Мушенбрук изобрел Лейденскую банку, которая стала первым электрическим конденсатором. Его создателем также является немецкий юрист и физик Эвальд Юрген фон Клейст. Оба ученых действовали параллельно и независимо друг от друга. Это открытие дает ученым полное право войти в список тех, кто создал электричество.
11 октября 1745 года Клейст произвел опыт с «медицинской банкой» и обнаружил способность хранения большого количества электрических зарядов. Затем он проинформировал об открытии немецких ученых, после чего в Лейденском университете был проведен анализ этого изобретения. Затем Питер ван Мушенбрук опубликовал свой труд, благодаря которому стала известна Лейденская банка.
Бенджамин Франклин
В 1747 году американский политический деятель, изобретатель и писатель Бенджамин Франклин опубликовал свое сочинение «Опыты и наблюдения с электричеством». В ней он представил первую теорию электричества, в которой обозначил его как нематериальную жидкость или флюид.
В современном мире фамилия Франклин часто ассоциируется со стодолларовой купюрой, но не следует забывать о том, что он являлся одним из величайших изобретателей своего времени. В списке его многочисленных достижений присутствуют:
- Известное сегодня обозначение электрических состояний (-) и (+).
- Франклин доказал электрическую природу молнии.
- Он смог придумать и представить в 1752 году проект громоотвода.
- Ему принадлежит идея электрического двигателя. Воплощением этой идеи стала демонстрация колеса, вращающегося под действием электростатических сил.
Публикация своей теории и многочисленные изобретения дают Франклину полное право считаться одним из тех, кто придумал электричество.
Проводники и диэлектрики
Не во всех веществах электроны одинаково легко покидают атомы, чтобы стать свободными электронами. Вещества, в которых мало свободных электронов, называют диэлектриками
. К ним относятся стекло, резина, сухое дерево и пр. Воздушный шарик и волосы также относятся к диэлектрикам, в них мало свободных электронов. Поэтому для электризации мало просто прикоснуться шариком к волосам, необходимо потереть их друг о друга, чтобы электроны смогли перейти с одного тела на другое.
Вещества, у которых свободных электронов достаточно много, называют проводниками
. К ним относятся различные металлы, земля. Кожа человека также является проводником. Поскольку в проводниках достаточно много зарядов, которые могут свободно передвигаться, их электризация происходит легче. По причине наличия свободных носителей заряда только в проводниках возможна электризация через влияние, поскольку она сопровождается перераспределением свободных электронов в теле. Кроме того, если передать заряд проводнику, то этот заряд распределится по всему объему проводника – одноименные заряды отталкиваются друг от друга, поэтому они не будут скапливаться в одной точке тела, они распределятся как можно дальше друг от друга, по всему телу.
Распределение заряда в металлическом теле
Рассмотрим металлический шар, заряженный, например, отрицательно. Это значит, что шар содержит избыточное количество электронов. В металле электроны могут свободно перемещаться. Понаблюдаем за их поведением. Предположим, что электроны распределены равномерно по объему шара. Т. к. они имеют одинаковый заряд, они будут отталкиваться друг от друга, поэтому распределятся равномерно по поверхности шара (если бы возникало скопление электронов, оно бы исчезало за счет отталкивания).
Если заряд шара положительный, это значит, что в нем недостаток электронов, их меньше, чем протонов. Если электроны были распределены равномерно по объему шара, то, притягиваясь положительным зарядом, они устремятся вглубь тела. Таким образом внутри тело будет нейтральным, а положительный заряд распределится снова по поверхности.
Заметим, что, если форма тела отличается от шара, распределение по поверхности не будет равномерным.
А как предсказать, какой заряд приобретут тела при электризации? Допустим, у нас есть стеклянная палочка и шелк. Если мы уже потерли их друг о друга, мы можем определить, где какой заряд скопился: по взаимодействию с телом, знак заряда которого заранее известен. Но есть ли какое-то правило, по которому можно даже без опыта предсказать, что электроны перейдут именно со стекла на шелк, а не наоборот?
Для диэлектриков знак заряда определили опытным путем. Просто перепробовали разные пары веществ и составили так называемые трибоэлектрические ряды.
При электризации тела, которые находятся ближе к положительному концу ряда, будут приобретать положительный заряд, ближе к отрицательному концу – отрицательный. При этом, по закону сохранения заряда, тела будет приобретать заряды, одинаковые по значению, но противоположные по знаку. Классические примеры:
1. Трение стеклянной палочки о шелк, при котором стекло приобретает положительный заряд, а шелк – отрицательный.
2. Трение эбонитовой палочки о шерсть. Эбонит приобретает отрицательный заряд, шерсть – положительный.
В случае с проводниками ситуация следующая: если привести в соприкосновение два одинаковых тела, то заряд перераспределится поровну. Если оба тела изначально электронейтральны, они такими и останутся. Но если есть ненулевой заряд хотя бы у одного тела, то заряд распределится. Например, два одинаковых шарика имели заряды 2 Кл и –6 Кл (см. рис. 5).
Рис. 5. Тела с различной величиной заряда
Шарики соприкоснулись. По закону сохранения заряда, общий заряд этих двух тел остался прежним (см. рис. 6):
Рис. 6. Распределение зарядов при соприкосновении тел с различной величиной заряда
При этом заряды шариков станут одинаковыми. То есть заряд каждого шарика станет равным .
В случае если один из проводников будет больше, чем другой, после прикосновения на больший проводник перейдет больший заряд (чтобы заряд был равномерно распределен по объему вещества). Планета Земля является проводником, причем очень больших размеров. Поэтому если соединить ее с заряженным проводником, то практически весь заряд с него перейдет в Землю. При работе электроприборов могут возникнуть ситуации, когда где-то скапливается нежелательный заряд, и вот таким способом, соединением прибора с Землей, от него можно избавиться. На этом основан принцип заземления.
Слайд 7Значительный перелом в представлениях об электрических и магнитных явлениях наступил в
самом начале XVII в., когда вышел в свет фундаментальный научный труд видного английского ученого Вильяма Гильберта (1554—1603 гг.) О магните, магнитных телах и о большом магните — Земле» (1600 г.). Будучи последователем экспериментального метода в естествознании. В. Гильберт провел более 600 искусных опытов, открывших ему тайны «скрытых причин различных явлений».
Представления Гильберта об электрическом «притяжении» было более правильным, чем у многих современных ему исследователей. По их утверждениям при трении из тела выделяется «тончайшая жидкость» которая отталкивает воздух, прилегающий к предмету: более отдаленные слои воздуха, окружающие тело, оказывают сопротивление «истечениям» и возвращают их вместе с легкими телами обратно к наэлектризованному телу.
Электризация трением
Как работает электричество, электризация
Положительный и отрицательный ионы
Как уже было отмечено, по умолчанию, атом электрически нейтрален: положительный и отрицательный заряды равны. Они компенсируют другу друга. Но, если, вдруг, представить себе, что хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов превысит отрицательный заряд всех оставшихся электронов. Поэтому такой атом в целом имеет свойства положительного заряда и называется положительный ион.
Электризация
Атом, получивший дополнительный электрон, будет иметь в преобладающей степени отрицательный заряд. В этом случае атом называется отрицательный ион.
Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.
Электризация
Электризацией называют процесс получения дополнительного электрона, либо наоборот его потерю. Если какое-либо тело имеет избыток или нехватку электронов, то есть явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.
Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.
Электризация трением
А вот, при натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.
Электризация металла
Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.
Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей, не получится одновременно по всей поверхности отделить оба металлических предмета. Так, в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.
Статическое электричество
Итак, теперь нам известно, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию. Затем они покидают атомы одного тела, которое становится положительно заряженным. Эти электроны занимают места на орбитах атомов другого вещества. Которое, в свою очередь, приобретает свойства отрицательного заряда. При этом одноименные заряды отталкиваются друг от друга, а разноименные – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.
В рассмотренных примерах получают так называемое статическое электричество.
Электрическая сила
В процессе электризации к заряженной пластмассовой палочке будут сами собой притягиваться кусочки бумаги. Почему это происходит?
Попробуем раскрыть тайну физического процесса. Она заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным. А противоположный край, соответственно, положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.
Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага. Той поверхностью, на которой скопились отрицательные заряды. И наоборот.
Формула закона Кулона
Электрическое поле
Механически действовать друг на друга тела могут лишь при касании (удар, толчок, соприкосновение). Подействовать первое тело на второе может с помощью посредника, третьего тела. Например, звучание музыкального инструмента барабанная перепонка уха воспринимает через посредника, которым является воздух. Для электрических зарядов ситуация другая. Они взаимодействуют без касания и без посредника. Взаимодействие это определяется электрическим полем, которое существует вокруг любого электрического заряда.
Поле невидимо. Его наличие подтверждается приборами или действием на тела или заряды.
Английский ученый Майкл Фарадей, введя понятие электрического поля, предложил его схематическое изображение с помощью линий со стрелками. Стрелки были названы силовыми линиями. Силовые линии поля отрицательного заряда направлены к заряду, у положительного – от заряда.
Источник
При сближении двух зарядов на близкие расстояния электрические поля изображаются следующим образом:
Силовые линии одноименных зарядов отталкиваются, разноименных – притягиваются. Как результат такого поведения полей, отталкивание или притяжение электрических зарядов.
При попадании в электрическое поле тело или частица испытывает на себе действие некоторой силы. Это главное свойство электрического поля.
Направление действия электрической силы зависит от знака заряда и расстояния от заряженного тела.
Полезное и вредное действие электризации
Если подробно изучить и правильно использовать электризацию, то она может стать полезным физическим явлением.
Существуют электрофильтры, которые применяются в дымовых трубах. Частицы сажи при трении о трубу электризуются и оседают на ее стенках. В воздух попадает уже меньшее количество вредных веществ.
Чтобы покрасить автомобиль, его корпус заряжают положительно, а краску – отрицательно. Частицы краски друг от друга отталкиваются и одновременно притягиваются к деталям автомобиля, что способствует равномерному, плотному и тонкому окрашиванию.
На хлебокомбинатах легче получить хорошо перемешанное тесто, если зарядить муку положительно, а воду – отрицательно, крупинки муки устремятся к каплям воды. В такой ситуации тесто превратится в однородную массу быстрее, что значительно увеличит производительность предприятия.
Используется электризация при копчении рыбы. Тушки рыбы соединяют с отрицательно заряженными стержнями, а коптильный дым заряжают положительно. Дым прилипает к поверхности рыбы и проникает в нее. Электрокопчение происходит равномерно и быстро. Прокопченный слой придает продукту особый вкус и одновременно защищает рыбу от порчи.
Электрофильтры, притягивающие к себе пыль, используют на крупных птицефабриках. Они очищают воздух от запыленности, что положительно сказывается на яйценоскости куриц и развитии молодняка.
Электризация может принести и большой вред.
Очень опасна электризация для цистерн по перевозке горючего. Во время наполнения цистерны заряды накапливаются внутри. При движении заряды продолжают накапливаться. Во время освобождения цистерны от самой малой искры может произойти взрыв.
В работающих типографских машинах от трения электризуется бумага, что может привести к ее воспламенению и пожару. Часто и в домашних принтерах при долгом печатании замечается слипание листов бумаги. Это тоже электризация.
В текстильной промышленности страдают от электризации чесальные машины, подстригающие ворс специальные ножницы. Все это приводит к запутыванию нитей, их обрыву и, как результат, поломкам станков.
При производстве резины электризуется каучук, проходящий между двумя вращающимися валами. Приближение к такому каучуку любого проводящего тела может вызвать искру и пожар.
И, конечно же, человек испытывает на себе неприятные ощущения от электризации одежды, волос, синтетических покрывал и ковров. Это происходит чаще в зимнее время, когда воздух более сухой. При трении во время ходьбы по синтетическим покрытиям или снятии одежды электроны «не могут найти» капельки воды в воздухе и оседают на коже человека, электризуя ее. Вместо антистатических веществ, проведя влажной рукой по одежде, накопленные на ней заряды снимаются. Одежда перестает прилипать к телу. Другой причиной электризации является неправильное сочетание одежды. Разные ткани через трение друг о друга электризуются и передают заряды человеку. Реакция людей на эти явления различна, потому что у каждого человека электрическая проводимость тела индивидуальна. Кто-то не заметит электризации, а кого-то сильно тряхнет в момент возникновения зарядов. Проветривание комнат для увлажнения воздуха, грамотный подход к выбору одежды и уходу за ней повлияют на снижение проявлений электризации человеческого тела.
Эффективно защищает от электризации заземление. Заряд уходит по проводнику в землю и распределяется в ней, предотвращая большие и малые неприятности.
Материалы
1. Органическое стекло – твердый, прозрачный синтетический материал, хорошо плавится, с пониженной хрупкостью.
2. Сургуч – легко плавящаяся и затвердевающая смесь, состоящая из твердой смолы, воска, мела, гипса.
3. Эбонит – черного или темно-коричневого цвета резина с высоким содержанием в своем составе серы (30-40%).
Как сделать самодельный электроскоп
Это очень легко сделать самодельный электроскоп. Необходимые элементы легко приобрести, а сборка электроскопа происходит довольно быстро.
Ниже перечислены принадлежности и материалы, необходимые для создания самодельного электроскопа за 7 простых шагов:
- Стеклянная бутылка Это должно быть чисто и очень сухо.
- Пробка для герметичного закрытия бутылки.
- Медный провод 14 калибра.
- Плоскогубцы.
- Ножницы.
- Алюминиевая фольга.
- Правило.
- Воздушный шар.
- Шерстяное полотно.
Шаг 2
Согните один конец медного провода, создавая вид спирали. Эта часть будет выполнять функции сферы восприятия электростатического заряда.
Этот шаг очень важен, так как спираль будет способствовать передаче электронов от исследуемого тела к электроскопу из-за существования большей площади поверхности.
Шаг 5
Разрежьте две алюминиевые фольги на треугольники длиной примерно 3 сантиметра
Важно, чтобы оба треугольника были идентичными
Убедитесь, что ламели достаточно маленькие, чтобы не соприкасаться с внутренними стенками бутылки.
Шаг 6
Сделайте небольшое отверстие в верхнем углу каждой фольги и вставьте оба куска алюминия в нижний конец медной проволоки.
Старайтесь, чтобы листы фольги были как можно более гладкими. Если алюминиевые треугольники ломаются или мнутся слишком сильно, лучше повторять образцы, пока не будет получен желаемый эффект.
Шаг 7
Поместите пробку на верхний край бутылки, очень осторожно, чтобы алюминиевая фольга не испортилась или сделанная сборка не потерялась
Чрезвычайно важно, чтобы обе ламели соприкасались при герметизации емкости. Если это не так, то вам придется изменить изгиб медной проволоки, пока листы не коснутся друг друга
Слайды и текст этой презентации
Выполнили ученицы Верхнекольцовской ООШ: Мирошникова А. Носова В.2010 г.
ПО ФИЗИКЕ
На тему:
Слайд 2ЭЛЕКТРИЗАЦИЯ ТЕЛ.
ДВА РОДА ЗАРЯДОВ. Электризация тел происходит при их
противоположного знака, взаимно притягиваются.
непроводники электричества.
Электроскоп.
Слайд 4Электрическое поле.
Электрон.Электрический заряд –этофизическая величина. Она обозначается буквой q.За единицу
электрическогозаряда принят кулон (Кл) . Эта единица названа в
честьфранцузского физика ШарляКулона.
Электрическое поле -это особый вид материи, отличающийся от вещества. Частицу, имеющую самый маленький заряд, назвали электроном. Основное свойство электрона- это электрический заряд.
Слайд 5 Строение атома такого: в центре атома находится ядро,
состоящее из протонов и нейтронов, а вокруг ядра движутся электроны.
Электрическим током называется упорядоченное(направленное) движение заряженных частиц.
Строение атома.
Электрический ток.
Слайд 6Электрическая цепь.
Действия электрического тока.Источник тока, приёмники, замыкающие устройства,соединённые между
приборов в цепь,называют схемами.
Слайд 7 Электрический заряд, проходящий через поперечное сечение проводника в
1 секунду, определяет силу тока в цепи:
I-сила тока, q- количество зарядов, t- время. Единицу силы тока называют Ампером(А).Она названа в честь французского учёного Андре Ампера. Прибор для измерения силы тока называют Амперметром. В цепь его подсоединяют последовательно.
Сила тока. Амперметр.
Слайд 8 Напряжение показывает, какую работу совершает электрическое поле при
перемещении единичного положительного заряда из одной точки в другую:
Из предыдущей формулы можно определить: U-напряжение, A- работа тока, q-электрический заряд. Единица напряжения названа вольтом(В) в честь итальянского учёного Алессандро Вольта. Для измерения напряжения на полюсах источника тока или на каком-нибудь участке цепи применяют прибор, называемый вольтметром.
Электрическое напряжение.Вольтметр.
Слайд 9 Зависимость силы тока от свойств проводника объясняется тем,
что разные проводники обладают различным электрическим сопротивлением. Электрическое сопротивление-
физическая величина .Обозначается она буквой R. За единицу сопротивления принят- 1Ом.
Электрическое сопротивление.
Слайд 10 Сила тока в участке цепи прямо пропорциональна напряжению на
концах этого участка и обратно пропорциональна его сопротивлению.
По имени немецкого учёного Георга Ома открывшего этот закон в 1827г.
Закон Ома.
Слайд 11Удельное сопротивление. Сопротивление проводника из данного вещества длинной
1м, площадью поперечного сечения1 называется удельным сопротивлением этого вещества:
из неё получим: Единица измерения удельного сопротивления:R-сопротивление,p-удельное сопротивление,l-длинна, S-площадь поперечного сечения проводника.
Слайд 12Последовательное соединение проводников.1. Сила тока в любых частях
цепи одна и та же :2. Общее сопротивление
равно сумме сопротивлений отдельных участков цепи:3. Полное напряжение равно сумме напряжений:
тока в неразветвлённой части цепи равна сумме сил токов в
отдельных проводниках:3.Общее сопротивление цепи определяется по формуле:
Слайд 14Работа электрического тока. Чтобы определить работу электрического тока
на каком- либо участке цепи, надо напряжение на концах этого
участка цепи умножить на электрический заряд прошедший по нему A-работа электрического тока, U- напряжение, I-сила тока, q-электрический заряд,t- время. Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа: Единица измерения работы электрического тока, применяемая на практике: Ватт-час(Вт ч)
Слайд 15Мощность электрического тока. Чтобы найти среднюю мощность электрического тока,
надо его работу разделить на время: Работа электрического тока
равна произведению напряжения на силу тока и на время: ,следовательно: Мощность электрического тока равна произведению напряжения на силу тока: Из этой формулы можно определить: I-сила тока,P-мощность,A-работа электрического тока,U-напряжение, t-время
ивремени.К этому же выводу, но на основаниеопытов пришли английский учёныйДжеймс
Джоуль и русский учёныйЭмилий Христианович Ленц. Поэтомусформировался закон Джоуля- Ленца..
Закон Джоуля-Ленца.
Q- количество теплоты, R-сопротивление,t- время,I-сила тока
В повседневной жизни
Вокруг нас постоянно происходит электризация тел. При трении некоторых предметов она становится настолько высокой, что к ним притягиваются даже габаритные тяжелые детали. В домашних условиях наблюдать процесс электризации можно следующим образом:
- Одеваем домашние тапочки матерчатые, только не с резиновой подошвой. Натираем длительно ногами по ковру или деревянному полу. И если коснуться кончиком пальцев с напарником, то получите разряд. В темноте будет видно как он сверкает.
- Часто незаземленные холодильники и стиральные машины тоже бились статическим электричеством. Это происходило по причине трения вращающихся частей.
- Электризуются ладони после трения их о ту же шерсть или шелк. Одежда на человеке притягивает разного рода пушинки, ворсинки по причине электризации. Девочки убирают её спреями-антистатиками, чтобы юбка не липла к ногам во время ходьбы.
Телевизоры по этой же причине притягивают пыль к экранам и корпусу. А воздушный шарик, натертый о волосы головы, можно надолго подвесить к потолку. Происходит притяжение заряженной поверхности к обоям или другому покрытию.
Заключение
Мы познали суть электричества, выяснили как это работает, по крайней мере, в общих чертах. Для людей с творческим мышлением, далеким от физики, можно мысленно представить, как очень маленькие частички очень быстро перетекают с одного места на другое по своей электрической цепи. Основой любого вещества является ядро. Если есть разница потенциалов (в одном месте возникло скопление одного вида зарядов, а в другом, противоположного вида), то при появлении пути (соединение цепи) начинается процесс выравнивания этих самых потенциалов. Таким образом вырабатывается электрический ток.