Клетки эукариот
Строение этих клеток более сложное, но они обладают теми же структурными компонентами, что и клетки прокариот, и способны выполнять схожие задачи.
В этих клетках есть очень много мембран (в отличии от прокариотических), которые разделяют клетку на особые изолированные области—компартменты. Они нужны для проведения различных химических реакций, независимо друг от друга. У эукариотов есть все те органеллы, которых нет у прокариотов, и они, вместе с ядром, выполняют все функции клетки. Пластиды, митохондрии и ядро отделены от цитоплазмы с помощью двумембранной оболочки. Хранилищем для генетического материала служит ядро. Хлоропласты нужны для фотосинтеза (процесса, в котором солнечная энергии преобразуется в химическую энергию углеводов). Митохондрии нужны для получения необходимой для клетки энергии из белков, жиров и углеводов.
Все органеллы эукариотической клетки имеют мембранное происхождение, за исключением рибосом, хромосом и микротрубочек.
Есть два способа деления эукариотических клеток: мейоз (у гамет—половых клеток), и митоз (у соматических клеток).
Микротрубочки
Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.
Строение микротрубочки
Особенности прокариотов
После того как появился электронный микроскоп, стало возможным дифференцировать эукариоты и прокариоты, а также изучить их подробнее.
Главное отличие доядерных клеток в том, что прокариоты – это бактерии, которые присутствуют повсеместно: в организме человека, воде, воздухе, растениях. Очень много бактерий находится в почве. Они живут даже в атомных реакторах!
Несмотря на мелкие размеры, прокариоты являются хранителями закодированной генетической информации, влияющей на жизнедеятельность организмов. Например, в плазмидах, которые находятся в свободном плавании среди вод цитоплазматического коктейля, может содержаться ген, влияющий на устойчивость бактерии к медикаментам.
Кроме того, простота организации не мешает бактериям процветать, активно множась, наряду с более сложными эукариотами.
Митохондрии
Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.
Строение митохондрии
Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.
Значение в природе и жизни человека
Оба типа имеют важнейшее значение в жизни человека. Эукариоты являются фундаментальной единицей строения живого организма, но эволюция началась именно с одноклеточных организмов.
Кроме того, прокариотами являются бактерии-симбионты, приносящие пользу человеческому организму. Также представители этой категории успешно разрушают продукты органического распада, оказывая незаменимую помощь природе в их переработке.
Пример
К ярким примерам положительного значения одноклеточных организмов может относиться использование бактерий-прокариот в процессе производства кисломолочных продуктов.
Что такое эукариотическая клетка
Организмы, состоящие из эукариотических клеток, называются эукариотами и являются частью эукариотического царства. К ним относятся животные, растения и грибы.
Эукариотическая клетка характеризуется тем, что внутри нее находится наследственный генетический материал (ДНК) организма и имеет сложную структуру, состоящую из органелл, которые выполняют различные важные функции в клетке.
Эукариотические клетки выполняют жизненно важные для эукариотических организмов функции, такие как, размещение генетического материала и выполнение процесса синтеза белка, что позволяет им получать энергию для выполнения других задач.
Сравнение прокариот и эукариот
Вся жизнь на Земле состоит из эукариотических клеток или прокариотических клеток. Прокариоты были первой формой жизни. Ученые считают, что эукариоты эволюционировали от прокариот около 2,7 миллиарда лет назад.
Эукариотическая клетка имеет мембрану, которая окружает ядро, отделяя его от цитоплазмы. Прокариотическая клетка не обладает структурами с мембранами внутри, то есть ее внутриклеточное содержимое разбросано по цитоплазме.
Сравнительная таблица характеристик прокариот и эукариот
Прокариоты | Эукариоты |
Клетка без определенного ядра, ее генетический материал рассеян в цитоплазме. | Клетка с ядром, определяемым мембраной, содержащей генетический материал. |
Размером т 1 до 10 микрон. | Размером от 10 до 100 микрон. |
Форма может быть сферической, спиралевидной. Хотя они одноклеточные, они могут образовывать колонии. | Очень разнообразные по форме, они могут представлять собой одноклеточные или многоклеточные организмы. |
Локализована в нуклеоиде, не будучи окруженной мембраной. | ДНК и белки образуют хроматин, который концентрируется в ядре |
Прямой способ деления клетки, в основном, путем бинарного деления. Нет митотического веретена или микротрубочек. | Делится с помощью митоза и мейоза. Клетка имеет митотический веретен или какую-то форму упорядочения микротрубочек. |
Выраженные в группах, называемых оперонами. | Индивидуально выраженные; они обладают интронами и экзонами. |
Рибосомы маленькие. | Рибосомы большие |
Жгутик простой, состоящий из белка флагеллина. | Соединение, состоящее из тубулина и других белков. |
Круговая хромосома. | Каждая с двумя хроматидами, центромерой и теломерами. |
Есть клеточная стенка. | Клеточная стенка присутствует только в растениях и грибах. |
Представители: бактерии и археи. | Представители: растения, животных и грибы. |
Примеры: бактерии золотистый стафилококк, архея Halobacterium salinarum. | Примеры: Дрожжи хлеба Saccharomyces cerevisiae, плодовая муха Drosophila melanogaster. |
Пластиды
Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.
Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.
Строение хлоропласта
Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.
Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.
Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.
Строение лейкопласта
Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.
Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.
Строение хромопласта
Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.
Типы клеточной организации
Среди живых организмов только вирусы не имеют клеточного строения. Все остальные организмы представлены клеточными формами жизни. Основными структурными единицами строения клеток являются:
- Цитоплазма – полужидкое содержимое клетки, в которой расположены внутриклеточные структуры.
- Органоиды – обязательные клеточные компоненты, имеющие постоянную форму и выполняющие жизненно важные функции.
- Мембрана – оболочка клетки, образованная двойным слоем фосфолипидов, пронизанным белковыми комплексами.
Различают два типа клеточной организации:
- Прокариотический — бактерии и цианобактерии (сине-зелёные),
- Эукариотический — растения, грибы и животные.
Сравнение Эукариотической и Прокариотической клеток
Клетка — наименьшая структурно-функциональная единица живого организма.Одноклеточные организмы состоят из одной-единственной клетки, выполняющей функции целостного организма. Например: бактерии; грибы; водоросли; простейшие животных.Многоклеточные организмы состоят из множества клеток, объединённых в ткани, органы и системы органов. Вне организма клетки могут существовать в питательной среде, близкой к физиологической (например, в условиях культуры тканей).Ткань — совокупность клеток, сходных по форме, строению и выполняемым функциям. Клетки тканей организма могут иметь индивидуальные особенности, но в целом, все клетки построены по единому плану и имеют общие черты.
Формы клеток могут быть различными:Звездчатая (нейрон); сферическая (яйцеклетка); цилиндрическая (эпителий); кубическая (эпителий); веретенообразная (мышечное волокно); дисковидная (эритроцит); призматическая (коньюктива глаза).
Многообразие клеток
Прокариоты
Прокариотические клетки (п-первые, простые — запоминалка )
- Нет ядра!
- Кольцевая ДНК не связанная с белками (нуклеоид — зона расположения ДНК в клетке прокариот)
- Есть рибосомы 70S
- Клеточная стенка состоит из муреина
- Органоиды движения — жгутики — состоят из белка флагеллина — это бактериальный белок, который способен самоорганизовываться в полые цилиндрические структуры, образующие филаменты бактериальных жгутиков.
- Цитоплазма неподвижна (тк отсутствуют микротрубочки)
- Мембранные органоиды отсутствуют
- Нет митохондрий
- Капсула (слизистый слой) — поверхностная временная структура содержит слой, обогащенный полисахаридами или слизистый слой
- Пили — волоскоподобные структуры на поверхности клетки, которые прикрепляются к другим бактериальным клеткам
- Есть мезосомы — впячивания плазматической мембраны
- Плазмиды — несущие гены кольцевые структуры ДНК, не участвующие в размножении
- Осмотрофное питание (транспорт растворённых питательных веществ через мембрану клетки); цианобактерии могут фотосинтезировать
Сравнение растительной, грибной и животной клеток:
Эукариотические клетки имеют ядро, в котором находятся хромосомы — линейные молекулы ДНК, связанные с белками — гистонами, в цитоплазме расположены различные мембранные органоиды.
Растительная клетка
- Есть ядро
- Есть рибосомы 80S
- Клеточная стенка толстая, состоит из целлюлозы
- Есть пластиды (хлоропласты, хромопласты, лейкопласты)
- Крупная центральная вакуоль (содержит большое количество клеточного сока, поддерживает тургор, может оттеснять ядро на периферию)
- Клеточный центр высших растений не содержит центриоли
- Автотрофный способ питания (путем фотосинтеза образуются органические вещества / путем хемосинтеза — получение энергии, за счет расщепления органических соединений)
- Запасным углеводом является крахмал
Грибная клетка
- Есть ядро
- Рибосомы 80S
- Клеточная стенка состоит из хитина
- Крупная центральная вакуоль
- Пластиды — отсутствуют
- Только у некоторых грибов в клеточном центре встречается центриоль
- Гетеротрофы (питаются готовыми органическими веществами); воду поглощают осмосом
- Запасной углевод — гликоген
Животная клетка
- Есть ядро
- Есть рибосомы 80S
- Не имеет постоянной формы
- Могут быть реснички или жгутики
- Есть плазматическая мембрана (нет клеточной стенки), на поверхности которой располагается гликокаликс (рецепторный комплекс)
- Способны к фагоцитозу (захват твердых пищевых частиц) / пиноцитоз (захват капель жидкости)
- Есть мелкие вакуоли – сократительные (удаление избытка воды и вредных продуктов обмена веществ) и пищеварительные (переваривание пищи)
- Запасное вещество — гликоген
- Пластиды — отсутствуют
Клеточный центр
Особенное образование. Он участвует в процессе митоза или мейоза (об этом ниже) и играет определенную роль в формировании цитоскелета.
Клеточный центр состоит из двух центриоль и центросферы. Центриоли внешне напоминают цилиндры, состоящие из микротрубочек. В процессе деления клетки они расходятся к полюсам клетки, и образуют веретено деление.
Органоиды движения есть не у всех клеток эукариот. Основная функция их, конечно, движение клетки, но также функции захвата веществ или сократительные. К этим органоидам относят:
- реснички (встречаются у инфузорий и клеток эпителия дыхательных путей);
- жгутики (жгутиконосцы и сперматозоиды);
- ложноножки (корненожки и лейкоциты);
- миофибриллы (мышечные клетки).
Сходства в строении растительной и животной клетки
Каждая клетка, независимо от своего происхождения, включает в себя стандартный набор органелл, играющих ключевую роль в процессах жизнедеятельности самой клетки. К таким органеллам относят:
- Ядро — важнейший компонент клетки, содержащий генетическую информацию и обеспечивающий её передачу потомкам. Ядро окружено двойной мембраной, благодаря чему полностью изолировано от цитоплазмы.
- Цитоплазма — вязкая прозрачная среда, заполняющая все пространство клетки. Цитоплазма позволяет органеллам свободно перемещаться внутри клетки, а также обеспечивает транспорт синтезированных веществ.
- Клеточная мембрана — оболочка, отделяющая клетку от внешней среды. Обеспечивает поступление веществ в клетку и вывод продуктов жизнедеятельности.
- Комплекс Гольджи — пластинчатый комплекс, предназначенный для синтеза белков и последующего их транспорта из клетки.
- Эндоплазматическая сеть — система плоских цистерн, канальцев и пузырьков, ограниченных мембранами. Участвует в обменных процессах, обеспечивая транспорт веществ из окружающей среды в цитоплазму.
-
Митохондрии — микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток. Также выполняют дыхательную функцию (поглощают кислород и выделют углекислый газ).
- Рибосомы — микроскопические немембранные органеллы, необходимые для синтеза белка. Они объединяют аминокислоты в пептидную цепь, образуя новые белковые молекулы.
- Лизосомы — мембранные органеллы, содержащие множество ферментов, способных разрушать все типы биологических полимеров: белки, нуклеиновые кислоты, углеводы и липиды. Выполняют функцию пищеварительной системы.
Рис. 1. Строение животной и растительной клетки.
Принципиальное сходство в особенностях строения и молекулярного состава клеток растений и животных указывает на родство и единство их происхождения. Отличаться они стали в ходе эволюции, под воздействием разных сред обитания и образа жизни.
Плазматическая мембрана.
Плазматическая мембрана окружает клетки всех живых организмов. В световой микроскоп она не видна, т. к. ее толщина составляет всего около 7 нм. С помощью электронного микроскопа установлено, что плазматическая мембрана состоит из фосфолипидного бислоя, окруженного белками. Часть белков погружена в фосфолипидный бислой и пронизывает его насквозь. Эти белки участвуют в избирательном транспорте различных соединений (сахаров, аминокислот, солей) в клетку и в удалении из клетки продуктов обмена. Расположенные на поверхности мембраны рецепторы гормонов и нейромедиаторов участвуют в гуморальной и нервной регуляции клеточной активности у многоклеточных организмов.
Плазматическая мембрана полупроницаема, то есть способна пропускать в клетку воду и некоторые низкомолекулярные соединения, и не пропускать макромолекулы и многие другие вещества. Это свойство обеспечивает барьерную функцию плазматической мембраны: отделение внутриклеточного содержимого от внешней среды и поддержание постоянства состава цитоплазмы. Плазматическая мембрана участвует в процессах фагоцитоза (поглощение твердых частиц) и пиноцитоза (поглощение капель жидкостей). При этом участок мембраны впячивается внутрь клетки и отшнуровывается от нее, образуя пищеварительную вакуоль. Фагоцитоз и пиноцитоз являются основой питания у многих одноклеточных организмов. У высших организмов с помощью фагоцитоза осуществляются защитные функции. Лейкоциты и некоторые клетки костного мозга, лимфатических узлов, селезенки с помощью фагоцитоза поглощают бактерий, вирусные частицы и другие чужеродные вещества. С помощью обратного фагоцитоза и пиноцитоза осуществляется секреция из клетки различных веществ. Большинство клеток растений, грибов и бактерий помимо плазматической мембраны имеют клеточную стенку. Это прочное образование, построенное из целлюлозы и лигнина (у растений), хитина (у грибов и некоторых водорослей) или из сложного комплекса белков и полисахаридов (у бактерий). Клеточная стенка препятствует фагоцитозу и пиноцитозу, поэтому питание большинства растений и грибов основывается на явлении осмоса. У некоторых животных, например, у членистоногих, прочный хитиновый покров имеют только клетки наружного эпителия, формирующие наружный скелет этих животных. У большого числа одноклеточных организмов плазматическая мембрана участвует в образовании кутикулы — прочной белковой оболочки клеток. Однако большинство животных клеток лишено клеточной стенки, поэтому эти клетки могут легко изменять форму и двигаться за счет ложноножек (амебоидное движение). У ряда животных клеток снаружи от плазматической мембраны образуется гликокаликс — эластичное образование, состоящее из гликопротеинов и углеводов. Как и клеточная стенка, он защищает плазматическую мембрану от механических повреждений, а также участвует во взаимодействии клеток между собой.
Строение эукариот
Эукариотическая клетка, образуя одноклеточный организм, существует самостоятельно. Также она может с другими клетками образовывать многоклеточные организмы.
В соответствии с организмом, образованным клеткой, существуют некоторые различия в её строении. Эти различия не так велики. Больше можно отметить черт сходства.
Эукариотическая клетка покрыта цитоплазматической мембраной. Она имеет многочисленные поры, образует складки, впячивания и выпячивания, что позволяет осуществлять поступление веществ с помощью пиноцитоза и фагоцитоза.
Пиноцитоз – это поступление капель жидкости. Фагоцитоз – это поступление твёрдых частичек через мембрану.
Растительная клетка имеет ещё прочную целлюлозную оболочку.
Ядерная клетка имеет множество мембранных органоидов:
Прежде всего, это оформленное ядро. Оно хранит и воспроизводит наследственную информацию. Также ядро регулирует жизнедеятельность клетки.
Внутреннее пространство заполнено цитоплазмой – это среда, в которой идут все реакции и процессы. По цитоплазме перемещаются органоиды и вещества.
Эндоплазматическая сеть. Она бывает шероховатой, на ней идёт биосинтез белка. Жиры и углеводы синтезируются на гладкой сети.
Аппарат Гольджи – это совокупность уплощённых полостей, мешочков, цистерн. В нём упаковываются и хранятся вещества, которые клетка синтезирует.
Рибосомы — участвуют в образовании белка.
Митохондрии — накапливают энергию в виде АТФ.
Пластиды — есть только в клетках растений. Они обеспечивают процесс фотосинтеза, окраску цветов и плодов, а также способствуют накоплению органических веществ.
Вакуоли — присутствуют, как правило, в растительной клетке. Содержат клеточный сок, обеспечивает тургор клетки.
Лизосомы — отвечают за внутриклеточное пищеварение.
Клеточный центр или центриоли — присутствуют в клетке животных. Органоид принимает участие в делении клетки.
Цитоскелет – микротрубочки из белковых волокон. Они связаны с цитоплазматической мембраной, поддерживают определённую форму клетки.
Митохондрии и хлоропласты – это органоиды, состоящие из двух мембран. Поверхностная мембрана гладкая, внутренняя — формирует многочисленные выросты. Эти два органоида содержат свою ДНК.
Происхождение эукариот
Известно, что клетки прокариота возникли 3,5 млн лет назад, и примерно 1,8 млн лет назад эволюционировали эукариотические клетки. Окаменелости эукариотических клеток есть в протерозое (1,5 млн лет назад), где наблюдаются остатки клеток с органеллами, покрытыми мембранами. В настоящее время большинство эукариотических клеток имеют обильные органеллы этого типа.
Как возникли эукариотические клетки
Эукариоты эволюционировали в течение протерозойской эры примерно 1,6 млрд лет назад. До возникновения эукариот вся жизнь на Земле была прокариотической (без ядра или других мембраносвязанных органелл). Ведущая гипотеза, называемая эндосимбиотической теорией, состоит в том, что эукариоты возникли в результате слияния архейских клеток с бактериями, где древний архей поглотил (но не съел) древнюю аэробную бактериальную клетку.
Поглощенная (эндосимбиозированная) бактериальная клетка оставалась внутри архейской клетки: поглощенная бактерия позволяла архейской клетке-хозяину использовать кислород для высвобождения энергии, запасенной в питательных веществах, а клетка-хозяин защищала бактериальную клетку от хищников. Такие отношения называются мутуалистическими.
На протяжении многих поколений симбиотические отношения между двумя организмами развивались настолько прочно, что ни один из них не мог выжить сам по себе. Данные о микрофоссилиях свидетельствуют о том, что эукариоты возникли где-то между 1,6 и 2,2 млрд лет назад. Иждивенцы этой древней поглощенной клетки сегодня присутствуют во всех эукариотических клетках в виде митохондрий.
Теория эндосимбиоза (также известная как теория последовательного эндосимбиоза) объясняет, как клетка возникает из мембранных органелл, таких как митохондрии и хлоропласт.
Суть теории естественного отбора, как ее установил «отец эволюции» Чарльз Дарвин, — это конкуренция. Исследователь в основном сосредоточился на описании конкуренции между людьми из популяции в пределах одного и того же вида, чтобы выжить.
Те особи, у кого самые благоприятные адаптации, могли лучше конкурировать за такие вещи, как еда, жилье и пара для размножения, чтобы создавать следующее поколение потомков, которые будут нести эти черты в своей ДНК.
Дарвинизм основан на конкуренции за эти виды ресурсов, чтобы естественный отбор работал. Без конкуренции все люди могут выжить, и благоприятные адаптации никогда не будут выбраны давлением окружающей среды.
Эволюция древнейших эукариот
Первый эукариот, возможно, произошел от предкового прокариота, который подвергся пролиферации мембран, разделению клеточной функции (на ядро, лизосомы и эндоплазматический ретикулум) и установлению эндосимбиотических отношений с аэробным прокариотом, что привело к образованию митохондрий.
Некоторые ранние эукариоты позже поглотили фотосинтезирующую бактерию, похожую на цианобактерии, что способствовало появлению хлоропластов у современных фотосинтезирующих эукариот.
Многообразие клеток
Одно из положений клеточной теории определяет клетку, как наименьшую структурно-функциональную единицу живого организма. В зависимости от количества таких структур все живые организмы делятся на «одноклеточных» и «многоклеточных».
Одноклеточным организмам свойственно выполнение функций целого организма. В данную категорию относят:
- бактерий;
- грибы;
- водоросли;
- простейших животных.
В многоклеточных структурах клеткам свойственна специализация выполняемых функций, за счет чего последние могут формировать ткани и органы.
Клеточные структуры обладают различными формами:
- звезда (нейрон);
- сфера (яйцеклетка);
- цилиндр (эпителий);
- куб (эпителий);
- веретено (мышечное волокно);
- диск (эритроцит);
- призма (коньюктива глаза).
А лейкоциты крови вообще лишены постоянной формы! Параметры размера клеток разняться в диапазоне 0,2-100 мкм.
Основными структурными единицами строения клеток являются:
- Цитоплазма – полужидкое содержимое клетки, в которой расположены внутриклеточные структуры.
- Органоиды – обязательные клеточные компоненты, имеющие постоянную форму и выполняющие жизненно важные функции.
- Мембрана – оболочка клетки, образованная двойным слоем фосфолипидов, пронизанным белковыми комплексами.
Самый страшный враг — вирус
Но у клеток есть враги совершенно особого свойства — это вирусы. Они самые простые на земле существа, стоящие, как полагают, на границе живой и неживой материи.
Размер вирусов измеряется в миллионных долях миллиметра. Вирусы вызывают явную или скрытую инфекцию и часто необратимо повреждают клетку. Вирус содержит только нуклеиновую кислоту — наследственную программу, заключенную в белковый чехол. Но он не имеет своей белоксинтезирующей системы, поэтому вне клетки вирус не проявляет никаких признаков жизни.
Для реализации своих жизненных потенций вирус должен обязательно проникнуть в клетку. Она сама затягивает в цитоплазму белковую оболочку вируса со смертельной начинкой.
Лизосомы сразу растворяют белковую оболочку вируса и обнажают его нуклеиновую кислоту — ДНК или РНК. Проникнув в клеточное ядро, вирус быстро подавляет деятельность её генетического аппарата и сам становится источником генетической информации, при этом копируется нуклеиновая кислота вируса.
Теперь уже его собственные информационные РНК направляются в цитоплазму и сами руководят синтезом вирусного белка. Белоксинтезирующий аппарат клетки подчиняется вирусу и работает по его наследственной программе. Вновь созданные цепочки вирусного белка поступают в клеточное ядро, где они кристаллизуются, превращаясь в белковые чехлы.
После выработки достаточного количества вирусного материала происходит самосборка массы новых вирусов. Разросшаяся армада вирусов покидает клетку, разрывая ее на части. Клетка погибает, а сотни тысяч вирусов продолжают свое наступление на другие, здоровые клетки. Под действием вирусов клетка гибнет, что приводит к возникновению заболевания.
Синтез белка с участием рибосом
На мембранах эндоплазматической сети находятся другие органоиды — рибосомы, с участием которых происходит синтез белков. Важными органоидами являются лизосомы, активно воздействующие на процессы внутриклеточного пищеварения. При захвате цитоплазмой питательных веществ, лизосомы сливаются с ними и образуют пищеварительную вакуоль.
В ней лизосомы при помощи гидролитических ферментов перерабатывают вещества, делая их усвояемыми для клетки. Ненужные отходы выталкиваются за пределы цитоплазмы.
Специальный органоид — пластинчатый комплекс Гольджи занимается накоплением и упаковкой синтезируемых веществ, а также выводом наружу продуктов жизнедеятельности.
Следующие органоиды — это митохондрии, которые снабжают каждую клетку и весь организм энергией в виде аденозинтрифосфата (АТФ) — универсального топлива всей живой материи.
Эта энергия является материальной основой для выполнения физиологических процессов в рамках наследственной программы организма. Важнейшее место в ней занимает синтез белков. Этот необыкновенный процесс жизнедеятельности выполняется по строго определенным этапам.
Главная роль в определении характера создающихся белков принадлежит молекулам дезоксирибонуклеиновой кислоты, которая находится в клеточном ядре. А вот синтез белков происходит в цитоплазме и осуществляется уже с помощью молекулы информационной рибонуклеиновой кислоты (иРНК).
Сначала информационная РНК синтезируется на ДНК и точно копирует одну из её двух спиралей. Затем с помощью ферментов происходит процесс синтеза РНК на одной из цепочек ДНК. При этом информация, содержащаяся в молекулах ДНК, точно переписывается на молекулы РНК, которые после синтеза направляются в цитоплазму к рибосомам.
«Многообразие клеток. Прокариоты и эукариоты»
Код раздела ЕГЭ: 2.2. Многообразие клеток. Прокариотические и эукариотические клетки. Сравнительная характеристика клеток растений животных, бактерий, грибов.
Подавляющее большинство известных на сегодняшний день живых организмов (растения, животные, грибы и бактерии) имеет клеточное строение. Форма клеток может быть округлой, цилиндрической, кубической, призматической, дисковидной, веретеновидной, звездчатой и др.
Несмотря на все разнообразие клеток, общий план строения для них един: все они содержат наследственную информацию, погруженную в цитоплазму, и окружающую клетку плазматическую мембрану. Снаружи от мембраны у клетки может быть еще клеточная стенка, состоящая из различных веществ, которая служит для защиты клетки и является своего рода ее внешним скелетом.
Прокариоты и эукариоты
В настоящее время различают два основных типа организации клеток: прокариотические и эукариотические.
Прокариотическая клетка не имеет ядра, ее наследственная информация не отделена от цитоплазмы мембранами. Область цитоплазмы, в которой хранится наследственная информация в прокариотической клетке, называют нуклеоидом. Прокариотами являются бактерии.
Эукариотическая клетка — клетка, в которой хотя бы на одной из стадий развития имеется ядро — специальная структура, в которой находится ДНК. К эукариотическим организмам относят растения, животные и грибы.
Размеры прокариотических клеток, как правило, на порядок меньше, чем размеры эукариотических. Большинство прокариот является одноклеточными организмами, а эукариоты — многоклеточными.
Сравнительная характеристика строения клеток растений, животных, бактерий и грибов
Кроме характерных для прокариот и эукариот особенностей, клетки растений, животных, грибов и бактерий обладают еще целым рядом особенностей. Так, клетки растений содержат специфические органоиды — хлоропласты, которые обусловливают их способность к фотосинтезу, тогда как у остальных организмов эти органоиды не встречаются.
Растительные клетки, как правило, содержат крупные вакуоли, наполненные клеточным соком. В клетках животных, грибов и бактерий они также встречаются, но имеют совершенно иное происхождение и выполняют другие функции. Основным запасным веществом, встречающимся в виде твердых включений, у растений является крахмал, у животных и грибов — гликоген, а у бактерий — волютин.
Еще одним отличительным признаком этих групп организмов является организация поверхностного аппарата: у клеток животных организмов клеточная стенка отсутствует, их плазматическая мембрана покрыта лишь тонким гликокаликсом, тогда как у всех остальных она есть. Это целиком объяснимо, поскольку способ питания животных связан с захватом пищевых частиц в процессе фагоцитоза, а наличие клеточной стенки лишило бы их данной возможности. Химическая природа вещества, входящего в состав клеточной стенки, неодинакова у различных групп живых организмов: если у растений это целлюлоза, то у грибов — хитин, а у бактерий — муреин.
Бактериальные клетки имеют следующие характерные для них структуры — плотную клеточную стенку, клеточную мембрану, одну кольцевую хромосому, расположенную в нуклеотиде, рибосомы, мезосомы (внутренние клеточные мембраны), жгутики и клеточные включения в виде жировых капель и гранул полисахаридов. В этих клетках нет многих органоидов, характерных для эукариотических растительных, животных и грибных клеток. По способу питания бактерии делятся на автотрофов, хемотрофов и гетеротрофов.
Клетки растений содержат характерные только для них пластиды — хлоропласты, лейкопласты и хромопласты; они окружены плотной клеточной стенкой из целлюлозы, а также имеют вакуоли с клеточным соком. Все зеленые растения относятся к автотрофным организмам.
У клеток животных нет плотных клеточных стенок. Они окружены клеточной мембраной, через которую происходит обмен веществ с окружающей средой.
Клетки грибов покрыты клеточной стенкой, отличающейся по химическому составу от клеточных стенок растений. Она содержит в качестве основных компонентов хитин, полисахариды, белки и жиры. Запасным веществом клеток грибов и животных является гликоген.
Это конспект по теме «Многообразие клеток. Прокариоты и эукариоты». Выберите дальнейшие действия:
- Перейти к следующему конспекту:
- Вернуться к списку конспектов по Биологии.
- Проверить знания по Биологии.