Переменные звёзды
Переменные звёзды – виды звёзд, в которых наблюдается (хотя бы один раз) перемена значения их блеска. Причины этому разные, как внутренние процессы, так и то, что звезда состоит в двойной системе.
Существуют разные виды переменных звёзд, различающиеся механизмами изменения их блеска.
Пульсирующие переменные
Изменение блеска в таких звёздах происходят из-за периодического расширения (сжатия) их поверхностных слоёв. Причём эти пульсации бывают двух видов: радиальные и не радиальные. В первых, при пульсации сферическая форма звезды сохраняется, а у вторых – нет.
Эруптивные переменные
Такие звёзды изменяют свой блеск за счет происходящих, в их коронах и фотосферах, бурных процессов, а также вспышек. Такие процессы возникают вследствие каких-то изменений или же сильного звёздного ветра, идущего от таких звёзд с разной интенсивностью.
Вращающиеся переменные
В этих звёздах поверхностная яркость неоднородная или же они имеют неправильную (не элипсообразную форму). Неоднородность поверхностной яркости можно объяснить как наличием пятен на поверхности звезды, так и наличием химических или температурных поверхностных неоднородностей.
Катаклизмические переменные (новоподобные и взрывные)
Изменение яркости в таких звёздах вызваны взрывными процессами, происходящими в разных слоях звезды. Глубоко в недрах – сверхновые звёзды, в поверхностных слоях – новые.
Такие виды звёзд переменной яркости занимают очень малый количественный процент, среди остальных.
Затменно-двойные системы
Этот подкласс переменных звёзд представляют собой двойные системы, вращающиеся за счёт общего центра масс, и расположены близко друг к другу. Наблюдатель фиксирует перемену яркости, из-за затмения одной из звёзд другой.
Звезды красных гигантов и сверхгигантов
Как не существует абсолютно идентичных людей, так нет и одинаковых звезд во Вселенной. Среди них выделяют группу звезд-гигантов, которые излучают в тысячи раз больше света, чем Солнце. Такие объекты имеют значительные размеры (от 10 до 1 000 радиусов нашего Светила) и невысокую плотность (около 10-2 — 10-4 кг/м3). Кроме того, с поверхности ряда гигантов происходит интенсивное истечение газового вещества.
К одним из самых уникальных и интересных представителей больших звезд относятся красные гиганты. Эти звезды имеют низкую температуру. Температура красных гигантов достигает в среднем 3 000 — 5 000С, а их радиус в сотни раз превосходит радиус Солнца. Отмечено, что светимость красных гигантов где-то в 100 раз больше, чем у нашей Звезды. Максимальное количество энергии излучения такого объекта приходится на красную и инфракрасную части спектра. Как следует из теории звездной эволюции, образование красных гигантов происходит из звезд главной последовательности после того, как в их центральной части произойдет практически полное выгорание водорода.
К тому времени, как вполне обычное светило превратится в красного гиганта, его структура успевает измениться: внутри образуется плотное, богатое гелием ядро. Вокруг ядра тонкий энерговыделяющий слой и протяженная оболочка. Масса красного гиганта составляет от 1,5 до 15 масс Солнца и плотность менее 0,001 г/см3, что намного меньше плотности нашей звезды. В астрономии к красным гигантам относятся:
- Альдебаран;
- Арктур;
- Гакрукс;
- Мира.
Среди этой категории светил встречаются особо крупные объекты, которые были выделены в отдельный класс красных сверхгигантов. Пока что таких звезд обнаружено совсем немного. Они отличаются достаточно большими размерами, а их светимость достигает 105 светимостей Солнца. Интересно, что такие объекты тяжелее нашего светила в 50 раз. Зато их радиусы достигают тысячи радиусов Солнца. Температура красного сверхгиганта 3 000 — 5 000С. Спектры этих объектов имеют молекулярные полосы поглощения, максимальное излучение приходится на спектральные области: красную, а также инфракрасную. Спектральный класс красного сверхгиганта К и М. Самым известным сверхгигантом является Бетельгейзе.
Процесс изучения и схема эволюции звезд
Весь процесс познания звезд можно условно разделить на несколько этапов. В самом начале следует определить расстояние до звезды. Информация о том, как далеко от нас находится звезда, как долго идет от нее свет, дает представление о том, что происходило со светилом на протяжении всего этого времени. После того, как человек научился измерять расстояние до далеких звезд, стало ясно, что звезды – это то же самые солнца, только разных размеров и с разной судьбой. Зная расстояние до звезды, по уровню света и количеству излучаемой энергии можно проследить процесс термоядерного синтеза звезды.
Вслед за определением расстояния до звезды можно с помощью спектрального анализа рассчитать химический состав светила и узнать его структуру и возраст. Благодаря появлению спектрографа у ученых проявилась возможность изучить природу света звезд. Этим прибором можно определить и измерить газовый состав звездного вещества, которым обладает звезда на разных этапах своего существования.
Звездное вещество состоит из тех же химических элементов (вплоть до железа), что и наша планета. Разница только в количестве тех или иных элементов и в процессах, происходящих на Солнце и внутри земной тверди. Это и отличает звезды от других объектов во Вселенной. Происхождение звезд следует также рассматривать в контексте другой физической дисциплины – квантовой механики. По этой теории, материя, которая определяет звездное вещество, состоит из постоянно делящихся атомов и элементарных частиц, создающих свой микромир. В этом свете вызывает интерес структура, состав, строение и эволюция звезд. Как выяснилось, основная масса нашей звезды и многих других звезд приходится всего на два элемента – водород и гелий. Теоретическая модель, описывающая строение звезды, позволит понять их строение и главное отличие от других космических объектов.
Главная особенность заключается в том, что многие объекты во Вселенной имеют определенный размер и форму, тогда как звезда может по мере своего развития менять размер. Горячий газ представляет собой соединение атомов, слабо связанных друг с другом. Через миллионы лет после формирования звезды начинается остывание поверхностного слоя звездного вещества. Большую часть своей энергии звезда отдает в космическое пространство, уменьшаясь или увеличиваясь в размерах. Передача тепла и энергии происходит из внутренних областей звезды к поверхности, оказывая влияние на интенсивность излучения. Другими словами, одна и та же звезда в разные периоды своего существования выглядит по-разному. Термоядерные процессы на основе реакций водородного цикла способствуют превращению легких атомов водорода в более тяжелые элементы – гелий и углерод. По мнению астрофизиков и ученых-ядерщиков, подобная термоядерная реакция является самой эффективной по количеству выделяемого тепла.
Почему же термоядерный синтез ядра не заканчивается взрывом такого реактора? Все дело в том, что силы гравитационного поля в нем могут удерживать звездное вещество в пределах стабилизированного объема. Из этого можно сделать однозначный вывод: любая звезда представляет собой массивное тело, которое сохраняет свои размеры благодаря балансу между силами гравитации и энергией термоядерных реакций. Результатом такой идеальной природной модели является источник тепла, способный работать длительное время. Предполагается, что первые формы жизни на Земле появились 3 млрд. лет назад. Солнце в те далекие времена грело нашу планету так же, как и сейчас. Следовательно, наша звезда мало чем изменилась, несмотря на то, что масштабы излучаемого тепла и солнечной энергии колоссальны – более 3-4 млн. тонн каждую секунду.
Звёзды-гиганты
Красные гиганты
Звезды более массивные, чем Солнце, образуют Красные сверхгиганты. Для них открываются другие пути эволюции.
Оценки, сделанные по идеализированной модели без учета вращения звезды и потери её массы на излучение,
показали, что если масса звезды находится в интервале значений 1,2 Мс11 кг/см3.
Красные гиганты-гибриды
Объекты Торна-Житков являются гибридами красных сверхгигантов и нейтронных звезд,
которые внешне напоминают обычных красных сверхгигантов, таких как
Бетельгейзе в созвездии Ориона.
Однако они отличаются по химическому составу, который является результатом уникальных процессов в недрах самих звезд.
Полагают, что эти объекты образуются в результате взаимодействия двух массивных светил – красного сверхгиганта и нейтронной звезды,
сформировавшейся в результате взрыва сверхновой. По-видимому, в ходе эволюционного взаимодействия двух звезд
более массивный красный сверхгигант поглощает нейтронную звезду, которая по спирали приближается к ядру красного сверхгиганта.
Астрономы обнаружили первый объект Торна-Житков – необычный тип гибридной звезды.
Сверхновые звёзды
Эти звёзды характерны тем, что их яркость при вспышке увеличивается всего лишь за несколько суток на грандиозную величину
и сравнима по силе со всеми остальными звёздами данной галактики.
На этой стадии массивная звезда взрывом заканчивает свою эволюцию.
Происходит сброс разреженной стремительно расширяющейся оболочки, а в центре остаётся сколлапсировавшееся (схлопнувшееся),
исключительно плотное тело в виде нейтронной быстро вращающейся звезды — пульсара, либо даже «чёрной дыры».
Эти взрывы служат основным поставщиком самых различных химических элементов и именно — тяжёлых,
однако, до конца феномен сверхновой не разгадан.
Ясно, что при вспышке выделяется колоссальное количество энергии, которая уносится нейтринным, электромагнитным,
гравитационным и другими видами излучений.
Вспышки сверхновых звёзд в нашей Галактике сравнительно редкое событие.
Считается, что одна вспышка в галактике случается в среднем примерно за 50—300 лет; 30 лет — нижний предел.
В окрестностях Солнца сверхновые не взрывались давно — со времён Кеплера.
Тем не менее, наличие некоторых нераспавшихся тяжёлых изотопов в недрах Земли
свидетельствует, что они попали на планету гораздо позже её образования.
Физики считают, что, например, любые плутоний-244 и железо-60, которые существовали,
когда Земля образовалась из межзвездного газа и пыли более 4 млрд лет назад, давно распались,
поэтому текущие их следы, должно быть, возникли в результате недавних космических событий.
На иллюстрации представлены наблюдения звездочётов и астрономов за сверхновыми. |
В 1998 году был открыт наложившийся на остаток сверхновой в Парусе
ещё один остаток сверхновой, получивший обозначение RX J0852.0-4622.
Независимо от этого были обнаружены исходящие из этого участка неба гамма-лучи, являющиеся продуктом распада
титана-44 (период полураспада примерно 60 лет), указывающие, что вспышка должна была состояться
относительно недавно (около 1200 года нашей эры), однако исторические свидетельства отсутствуют.
Интенсивность потока гамма- и рентгеновских лучей указывают на то, что
сверхновая вспыхнула относительно недалеко от Земли (200 парсек или 660 световых лет).
Стадии эволюции звезд
Судьба светила в находится в зависимости от исходной массы звезды и ее химического состава. Пока в ядре сосредоточены основные запасы водорода, звезда пребывает в так называемой главной последовательности. Как только наметилась тенденция на увеличение размеров звезды, значит, иссяк основной источник для термоядерного синтеза. Начался длительный финальный путь трансформации небесного тела.
Образовавшиеся во Вселенной светила изначально делятся на три самых распространенных типа:
- нормальные звезды (желтые карлики);
- звезды-карлики;
- звезды-гиганты.
Звезды с малой массой (карлики) медленно сжигают запасы водорода и проживают свою жизнь достаточно спокойно.
Таких звезд большинство во Вселенной и к ним относится наша звезда – желтый карлик. С наступлением старости желтый карлик становится красным гигантом или сверхгигантом.
Исходя из теории происхождения звезд, процесс формирования звезд во Вселенной не закончился. Самые яркие звезды в нашей галактике являются не только самыми крупными, в сравнении с Солнцем, но и самыми молодыми. Астрофизики и астрономы называют такие звезды голубыми сверхгигантами. В конце концов, их ожидает одна и та же участь, которую переживают триллионы других звезд. Сначала стремительное рождение, блистательная и ярая жизнь, после которой наступает период медленного затухания. Звезды такого размера, как Солнце, имеют продолжительный жизненный цикл, находясь в главной последовательности (в средней ее части).
Используя данные о массе звезды, можно предположить ее эволюционный путь развития. Наглядная иллюстрация данной теории – эволюция нашей звезды. Ничто не бывает вечным. В результате термоядерного синтеза водород превращается в гелий, следовательно, его первоначальные запасы расходуются и уменьшаются. Когда-то, очень не скоро, эти запасы закончатся. Судя по тому, что наше Солнце продолжает светить уже более 5 млрд. лет, не меняясь в своих размерах, зрелый возраст звезды еще может продлиться примерно такой же период.
Запасов водорода и гелия в этой части звезды хватит еще на миллионы лет. Еще очень нескоро истощение запасов водорода приведет к увеличению интенсивность излучения, к увеличению размеров оболочки и размеров самой звезды. Как следствие, наше Солнце станет очень большим. Если представить эту картину через десятки миллиардов лет, то вместо ослепительного яркого диска на небе будет висеть жаркий красный диск гигантских размеров. Красные гиганты – это естественная фаза эволюции звезды, ее переходное состояние в разряд переменных звезд.
Когда погаснет Солнце?
Мы говорим — «Солнце горит», но источником его излучения являются вовсе не химические реакции горения, а термоядерный синтез. В условиях сверхвысоких температур и давлений ядра водорода (главного элемента в составе Солнца) начинают соединяться и образовывать ядра другого элемента — гелия. При этом выделяется в миллионы раз больше энергии, чем при горении.
Каждую секунду на Солнце в энергию полностью превращается 4,26 млн т вещества, однако эта величина просто ничтожна по сравнению с общей массой нашего главного светила. Запасов водорода, необходимого для термоядерных реакций, нашей звезде хватит еще на несколько миллиардов лет.
Жизненный цикл Солнца
Возраст Солнца ученые оценивают в 4,67 млрд лет. И на протяжении всего этого времени ведет оно себя очень «уравновешенно». Количество светового и теплового излучения нашего светила почти постоянно, а вот мощности его ультрафиолетового, рентгеновского и радиоизлучения постоянно меняются. Изменчива также плотность потока частиц, которые Солнце выбрасывает в окружающее пространство — ученые называют его «солнечным ветром».
То, что тепловое излучение Солнца постоянно,— большая удача для человечества. Если бы оно было хотя бы на 10 процентов мощнее, то наша планета превратилась бы в раскаленную пустыню, на 10 процентов слабее — и Земля покрылась бы вечными льдами.
Зеленый лист растения — основа жизни на Земле, которая не могла бы существовать без солнечного излучения
Солнце образовалось из туманности, которая состояла из чистого водорода. Все остальные элементы, входящие в состав солнечной плазмы, — гелий, железо, никель, хром, магний, азот, кислород, углерод, кальций и неон, — образовались в результате сложных ядерных реакций и превращения элементов. Но, в отличие от более крупных звезд, нашему светилу не грозит опасность окончить свое существование грандиозным взрывом, превратившись в сверхновую. Для этого его масса слишком мала.
Таким, как мы видим его, солнце просуществует около 10 млрд лет. Сегодня оно находится почти на середине этого бесконечно длинного пути. Но что же ждет его в отдаленном будущем?
То же, что и все остальные звезды такого же спектрального класса и массы. Через 4—5 млрд лет оно превратится в красный гигант. По мере того, как водородное топливо в ядре Солнца будет иссякать, его внешняя оболочка будет расширяться, а ядро — сжиматься и нагреваться. И примерно через 7,8 млрд лет, когда температура в ядре достигнет 100 млн градусов, в нем начнутся термоядерные реакции синтеза углерода и кислорода из гелия. Солнце начнет быстро терять массу и расширяться. Его внешняя поверхность достигнет современной орбиты Земли, но Земля к этому времени будет уже далеко — из-за того, что Солнце станет менее массивным, она перейдет на более далекую орбиту и не угодит в горячую плазму.
Но хорошего все равно мало — в течение следующих 500—700 млн лет поверхность Земли будет настолько горячей, что на ней станет невозможным существование какой-либо формы жизни, а вся вода на планете превратится в пар.
Солнце, превратившееся в красный гигант
После этого «состарившийся» красный гигант потеряет внешнюю оболочку, из которой образуется планетарная туманность. В центре этой туманности останется крохотный белый карлик, который образуется из очень горячего ядра Солнца. В течение еще нескольких миллиардов лет он будет постепенно остывать и угасать.
Поделиться ссылкой
Наименование звезд Вселенной
Древние люди не обладали нашими техническими преимуществами, поэтому в небесных объектах узнавали образы различных существ. Это были созвездия, о которых сочиняли мифы, чтобы запомнить названия. Причем практически все эти имена сохранились и используются сегодня.
В современном мире насчитывается (среди них 12 относятся к зодиакальным). Самая яркая звезда получает обозначение «альфа», вторая – «бета», а третья – «гамма». И так продолжается до конца греческого алфавита. Есть звезды, которые отображают части тела. Например, ярчайшая звезда Ориона (Альфа Ориона) – «рука (подмышка) великана».
Не стоит забывать, что все это время составлялось множество каталогов, чьи обозначения используют до сих пор. Например, Каталог Генри Дрейпера предлагает спектральную классификацию и позиции для 272150 звезд. Обозначение Бетельгейзе – HD 39801.
Но звезд на небе невероятно много, поэтому для новых используют аббревиатуры, обозначающие звездный тип или каталог. К примеру, PSR J1302-6350 – пульсар (PSR), J – используется система координат «J2000», а последние две группы цифр – координаты с кодами широты и долготы.
Звезды все одинаковые? Ну, когда наблюдаешь без использования техники, то они лишь слегка отличаются по яркости. Но ведь это всего лишь огромные газовые шары, так? Не совсем. На самом деле, у звезд есть классификация, основанная на их главных характеристиках.
Среди представителей можно встретить голубых гигантов и крошечных коричневых карликов. Иногда попадаются и причудливые звезды, вроде нейтронных. Погружение во Вселенную невозможно без понимания этих вещей, поэтому давайте познакомимся со звездными типами поближе.
Большая часть вселенских звезд находится в стадии главной последовательности. Можно вспомнить Солнце, Альфа Центавра А и Сирус. Они способны кардинально отличаться по масштабности, массивности и яркости, но выполняют один процесс: трансформируют водород в гелий. При этом производится огромный энергетический всплеск. Такая звезда переживает ощущение гидростатического баланса. Гравитация заставляет объект сжиматься, но ядерный синтез выталкивает его наружу. Эти силы работают на уравновешивании, и звезде удается сохранять форму сферы. Размер зависит от массивности. Черта – 80 масс Юпитера. Это минимальная отметка, при которой возможно активировать процесс плавления. Но в теории максимальная масса – 100 солнечных. |
Если топлива нет, то у звезды больше не хватает массы, чтобы продлить ядерный синтез. Она превращается в белого карлика. Внешнее давление не работает, и она сокращается в размерах из-за силы тяжести. Карлик продолжает сиять, потому что все еще остаются горячие температуры. Когда он остынет, то обретет фоновую температуру. На это уйдут сотни миллиардов лет, поэтому пока просто невозможно найти ни единого представителя. |
Цефеиды – звезды, пережившие эволюцию из главной последовательности к полосе неустойчивости Цефеиды. Это обычные радио-пульсирующие звезды с заметной связью между периодичностью и светимостью. За это их ценят ученые, ведь они являются превосходными помощниками в определении дистанций в пространстве. Они также демонстрируют перемены лучевой скорости, соответствующие фотометрическим кривым. У более ярких наблюдается длительная периодичность. Классические представители – сверхгиганты, чья масса в 2-3 раза превосходит солнечную. Они пребывают в моменте сжигания топлива на этапе главной последовательности и трансформируются в красных гигантов, пересекая линию неустойчивости цефеид. |
Если говорить точнее, то понятие «двойная звезда» не отображает реальную картинку. На самом деле, перед нами звездная система, представленная двумя звездами, совершающими обороты вокруг общего центра масс. Многие совершают ошибку и принимают за двойную звезду два объекта, которые кажутся расположенными близко при наблюдении невооруженным глазом. Ученые извлекают из этих объектов пользу, потому что они помогают вычислить массу отдельных участников. Когда они передвигаются по общей орбите, то вычисления Ньютона для гравитации позволяют с невероятной точностью рассчитать массу. Можно выделить несколько категорий в соответствии с визуальными свойствами: затмевающие, визуально бинарные, спектроскопические бинарные и астрометрические. Затмевающие – звезды, чьи орбиты создают горизонтальную линию от места наблюдения. То есть, человек видит двойное затмение на одной плоскости (Алголь). Визуальные – две звезды, которые можно разрешить при помощи телескопа. Если одна из них светит очень ярко, то бывает сложно отделить вторую. |
Трансформация белого карлика
Сверхновая типа Ia
Особую категорию сверхновых составляет вспышки Ia класса. Это единственный класс сверхновых звезд, который может происходить в эллиптических галактиках. Такая особенность говорит о том, что эти вспышки не являются продуктом смерти сверхгигантов. Сверхгиганты не доживают до того момента, как их галактики «состарятся», т.е. станут эллиптическими. Также все вспышки этого класса имеют практически одинаковую яркость. Благодаря этому сверхновые Ia типа являются «стандартными свечами» Вселенной.
Они возникают по отличительно иной схеме. Как отмечалось ранее, эти взрывы по своей природе чем-то сходны с новыми взрывами. Одна из схем их возникновения предполагает, что они также зарождаются в тесной системе белого карлика и его звезды-компаньона. Однако, в отличие от новых звезд, здесь происходит детонация иного, более катастрофического типа.
По мере «пожирания» своего компаньона, белый карлик увеличивается в массе до тех пор, пока не достигнет предела Чандрасекара. Этот предел, примерно равный 1,38 солнечной массы, является верхней границы массы белого карлика, после которого он превращается в нейтронную звезду. Такое событие сопровождается термоядерным взрывом с колоссальным выделением энергии, на много порядков превышающим обычный новый взрыв. Практически неизменное значение предела Чандрасекара объясняет столь малое расхождение в яркостях различных вспышек данного подкласса. Эта яркость почти в 6 миллиардов раз превышает солнечную светимость, а динамика её изменения такая же, как у сверхновых Ib, Ic класса.
Белые карлики
Что дальше? Давление, которое создают звезды типа Солнца, недостаточно велико, чтобы запустить новые термоядерные реакции с участием углерода, образовавшегося ранее из-за горения гелия в ядре звезды, и избежать гравитационного коллапса будет уже невозможно. Гравитация победит в очередной раз, и коллапс таки произойдет.
Мы знаем, что гравитационное сжатие облака межзвездного газа на ранних стадиях эволюции Солнца разогнало атомы настолько, что во время жестких столкновений ядра лишались своих электронов. На протяжении всего жизненного цикла звезды, от стадии главной последовательности до стадии красного гиганта, эти электроны «наблюдали» за происходящим, а процессы в ядре играли основную роль. Теперь настал их звездный час.
На диаграмме Герцшпрунга Рассела (вверху) показана связь между температурой звезды и ее светимостью. Температура звезд при движении слева направо падает; при перемещении сверху вниз ослабевает яркость излучения. Наше Солнце — типичная звезда в центре главной последовательности.
Одно свойство электронов играет особую роль на этой стадии жизненного цикла звезды. Это принцип запрета, или принцип Паули: два электрона и более не могут находиться одновременно в одном и том же состоянии. Представьте себе толпу людей: вы можете их сблизить друг с другом, но, достигнув сближения, при котором каждому необходимо минимальное количество жизненного пространства, вам не удается хоть сколько-нибудь еще уменьшить размер толпы. Также и с оторванными от ядер электронами: они вплотную приближаются друг с другу при коллапсе звезды настолько, что в какой-то момент еще приблизить их друг к другу становится невозможно. В этой точке гравитация силится столкнуть их, сами же они отталкиваются друг от друга, и этот процесс характеризует стабильность звезды в финальной стадии. Она будет длиться вечно.
Солнце достигнет окончательного равновесия, когда сколлапсирует до размеров Земли. Звезда станет раскаленной добела, как тлеющие угли в догорающем пламени. Астрономы называют объекты такого типа белыми карликами. Они продолжают излучать остатки энергии, выработанной за длинный жизненный цикл, но, как и угли в гаснущем костре, со временем угасают и остывают. Вот так закончит свою жизнь наше светило наряду со многими звездами, которые мы сегодня наблюдаем на небе.
Эпизод IV. Конец существования звезд и их гибель
Диск звезды Бетельгейзе, снимок телескопа Хаббл
Старые светила, как и их юные собратья, делятся на несколько видов: с малой массой, средних размеров, сверхмассивные звезды, белые карлики, нейтронные и черные дыры. Что касается объектов с небольшой массой, то до сих пор нельзя точно утверждать какие именно процессы с ними происходят на последних стадиях существования. Все подобные явления гипотетически описаны при помощи компьютерного моделирования, а не на основании тщательных наблюдений за ними. После окончательного выгорания углерода и кислорода происходит увеличение атмосферной оболочки звезды и быстрая потеря ею газовой составляющей. В финале своего эволюционного пути светила многократно сжимаются, а их плотность наоборот значительно возрастает. Такую звезду принято считать белым карликом. Затем в ее жизненной фазе следует период красного сверхгиганта. Последним в цикле существования звезды является ее превращение, в результате очень сильного сжатия, в нейтронную звезду. Однако не все подобные космические тела становятся таковыми. Некоторые, чаще всего наиболее крупные по параметрам (больше 20-30 масс Солнца), переходят в разряд черных дыр в результате коллапса.
Этапы эволюции
Звезды также делятся на основе их эволюционных стадий, которые аналогичны классам светимости. На протяжении всего своего жизненного цикла звезда будет протозвездой, звездой до главной последовательности, звездой главной последовательности и, возможно, гигантом или сверхгигантом. В зависимости от её начальной массы, она закончит свою жизнь как белый карлик, нейтронная звезда или черная дыра. Когда они достаточно остынут, белые карлики могут стать черными карликами, гипотетическими остатками звезд, которые еще не наблюдались, потому что Вселенная недостаточно стара, чтобы какой-либо остаток звезды достиг этой стадии.
Главная последовательность — это самая длинная стадия в жизни звезды. Большинство настоящих звезд — это звезды главной последовательности, включая Солнце. На этом этапе звезды генерируют энергию в своих ядрах путем превращения водорода в гелий. Энергия переносится на поверхность и излучается в фотосфере.
Масса 0,08 массы Солнца обычно устанавливается как нижний предел, ниже которого ядро звезды не достигает достаточно высокой температуры для стабильного воспламенения водорода. Объекты ниже этого предела называются коричневыми карликами. Это субзвездные объекты или неудавшиеся звезды. Однако, коричневые карлики похожи на звезды в том, что они сжигают дейтерий в своих ядрах. Звезды с малой массой также изначально сжигают дейтерий.
Массы звезд могут находиться в диапазоне от 0,08 до 150 или более масс Солнца. Самые массивные известные звезды, звезды Вольфа-Райе R136a1 и BAT99-98 в Большом Магеллановом облаке, оцениваются в 184-260 масс Солнца (R136a1) и около 226 масс Солнца (BAT99-98). Звезда Вестерхаут 49-2 в Орле является еще одним кандидатом на звание самой массивной из известных звезд с предполагаемой массой 90-240 масс Солнца. Звезда с наименьшей массой — красный карлик SCR 1845−6357A в южном созвездии Павлина. Её масса оценивается в 0,07 массы Солнца.